Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The experiments on high Rydberg states interacting with short electromagnetic pulses were hitherto mainly explained by using numerical integration of the time-dependent Schrödinger equation in a restricted state basis. In this study we apply a different approach based on the Bersons-Kulsh analytical form factor of the short-pulse approximation. This analytical approach is shown to well reproduce the recent experimental results and those of numerical integration of the time-dependent Schrödinger equation both in the case of terahertz half-cycle pulses and optical many-cycle pulses. This fact enables a recommendation of the analytical Bersons-Kulsh form factor as an alternative and efficient method of quantum calculations of electromagnetically induced Rydberg state redistribution.
EN
We formulate the problem of a two-level system in a linearly polarized laser field in terms of a nonlinear Riccati-type differential equation and solve the equation analytically in time intervals much shorter than half the optical period. The analytical solutions for subsequent intervals are then stuck together in an iterative procedure to cover the whole scale time of the laser pulse. Very good quality of the iterative method is shown by recovering with it a number of subtle effects met in earlier numerically calculated photon-emission spectra from model molecular ions, double quantum wells, atoms, and semiconductors. The method is used to describe novel, carrier-envelope offset phase effects in the region of extreme nonlinear optics, i.e., when two-level systems are exposed to pulses of only a few cycles in duration and strength ensuring the Rabi frequency to approach the laser light frequence.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.