Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The synchrotron radiation was used to apply tunable high energy X-ray photoemission spectroscopy for investigation of electronic structure of semiconductor nanostructure CdTe/Pb_{0.95}Eu_{0.05}Te/CdTe/GaAs(001) top part. The Pb_{0.95}Eu_{0.05}Te (6 nm thick) was buried under thin (22 nm) top layer of CdTe transparent for part of electrons photoemitted from Pb_{0.95}Eu_{0.05}Te buried layer. The top layer of CdTe was sputtered by Ar ion bombardment for surface cleaning and for leaving the thickness of CdTe more transparent for photoelectrons emitted from buried layer. For these thickness of the top layer the photoemission energy distribution curves corresponding to the valence band and core levels electrons of the buried layer atoms were measured with application of synchrotron radiation of energy hν = 3510 eV. The measured spectra corresponding to the buried layer atoms were observed in the valence band region and in the high binding energy region for core levels of Pb 4f, Pb 3d. The valence band contribution and core levels Cd 4d and Cd 3d were obtained mainly from top cover layer. Measured Te 4d, Te 3d and Te 4d spectra possess contribution as well from top cover layer as from the buried layer. The amount of Eu atoms was to small to be reasonable detected and presented in the paper.
EN
The high-energy X-ray photoelectron spectroscopy was used to determine the composition and chemical structure of epitaxial LaNiO_{3-x} films obtained by a reactive dc magnetron sputtering. It was found that the oxide and hydroxide species of La and Ni are on the films surface. The thickness of hydroxide enriched layer, estimated from the oxide and hydroxide peak intensities, is about 2 nm.
3
68%
EN
We report valence states of ions in La_{0.7}Ce_{0.3}MnO_3 thin films grown by a reactive dc magnetron sputtering. The measurements were performed by means of high-energy X-ray photoelectron spectroscopy using synchrotron radiation. It was found that Ce ion in the compound is either in tetravalent or trivalent chemical state, manganese is in divalent, trivalent and tetravalent states, while La ion existing in oxide and hydroxide chemical species is in trivalent state.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.