Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
This work investigates the hot tearing behavior of Mg-Al and Mg-Zn alloys quantitatively based on the measurement of contraction force using an experimental setup which was developed at MagIC. An emphasis is given on the analysis of typical hot tearing curves to understand the corresponding metallurgical phenomena shown by these curves. The recorded hot tearing curves, i.e. the contraction force vs. temperature or time, contain valuable metallurgical information. They give not only the precise temperature at which the hot tearing initiates, but also depict information about the propagation of hot cracks. Combined with thermodynamic calculations, the critical solid fraction corresponding to the occurrence of hot tearing can be calculated. Further microstructural observations were performed. Several phenomena such as the crack propagation and refilling of cracks, which influence the slope of hot tearing curves, are also discussed.
EN
Mg-Ca-Gd based alloys are investigated as a potential alloy for degradable biomaterials with some promising results. In this investigation the Mg10CaxGd (x=5, 10, 20) were investigated with synchrotron radiation X-ray diffraction during solidification to follow the phase evolution at two different cooling rates at 5 and 50 K min^{-1}. All three alloys show formation of α -Mg followed by Mg₂Ca phase, while only Mg10Ca20Gd alloy contained Mg₅Gd phase during solidification. During cooling α -Mg was first observed between 628 and 632°C at a cooling rate of 5 K min^{-1} while this decreased to 620-628°C with the increase in cooling rate to 50 K min^{-1}. The change in cooling rate from 5 to 50 K min^{-1} did not change the types of intermetallic phases observed but resulted in suppressing temperatures at which the intermetallic phases were first detected.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.