Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The aim of the study was to assess the expression of MGMT, p16, and APC genes in tumors and matching surgical margin samples from 56 patients with primary OSCC. We also analyzed the association of the clinical variables with the expression of the studied genes. After RNA isolation and cDNA synthesis gene expression levels were assessed by quantitative reverse transcription (qRT)-PCR. Two-sided parametrical Student's t-test for independent groups with equal/unequal variances showed no statistically significant differences in genes' expression in tumor compared to margin samples. No association was found between the genes' expression and clinical parameters, except for MGMT, whose low expression was probably associated with smoking (0.87 vs 1.34, p=0.065). 'Field cancerization' is an area with genetically or epigenetically altered cells and at the same time a risk factor for cancer. Disturbances in gene expression could also be the source of damages leading to cancerization. In conclusion, it is important to mention that the field remaining after a surgery may pose an increased risk of cancer development. It may be suggested that the diagnosis and treatment of cancers should not be concentrated only on the tumor itself, but also on the cancer field effect. Therefore, further molecular analysis on surgical margins and additional research regarding their assessment are required.
EN
One of the mechanisms of Candida albicans resistance to azole drugs used in antifungal therapy relies on increased expression and presence of point mutations in the ERG11 gene that encodes sterol 14α demethylase (14DM), an enzyme which is the primary target for the azole class of antifungals. The aim of the study was to analyze nucleotide substitutions in the Candida albicans ERG11 gene of azole-susceptible and azole-resistant clinical isolates. The Candida albicans isolates represented a collection of 122 strains selected from 658 strains isolated from different biological materials. Samples were obtained from hospitalized patients. Fluconazole susceptibility was tested in vitro using a microdilution assay. Candida albicans strains used in this study consisted of two groups: 61 of the isolates were susceptible to azoles and the 61 were resistant to azoles. Four overlapping regions of the ERG11 gene of the isolates of Candida albicans strains were amplified and sequenced. The MSSCP (multitemperature single strand conformation polymorphism) method was performed to select Candida albicans samples presenting genetic differences in the ERG11 gene fragments for subsequent sequence analysis. Based on the sequencing results we managed to detect 19 substitutions of nucleotides in the ERG11 gene fragments. Sequencing revealed 4 different alterations: T495A, A530C, G622A and A945C leading to changes in the corresponding amino acid sequence: D116E, K128T, V159I and E266D. The single nucleotide changes in the ERG11 gene did not affect the sensitivity of Candida albicans strains, whereas multiple nucleotide substitutions in the ERG11 gene fragments indicated a possible relation with the increase in resistance to azole drugs.
EN
Co-occurrence of metabolic disorders is a recognized risk factor for the development of colorectal cancer which is currently the leading cause of morbidity due to malignant neoplasms in the world. The pathogenesis of colorectal cancer is not well understood yet. Among the postulated neoplastic mechanisms is the activation of insulin-like growth factors, with both epidemiological and clinical observations of their role. In this paper, the authors synthesize the current knowledge about the importance of activation of insulin-like growth factors in the development of colorectal cancer.
EN
A phenomenon of increasing resistance of Candida spp. to azoles has been observed for several years now. One of the mechanisms of lack of sensitivity to azoles is associated with CDR1, CDR2, MRD1 genes (their products are active transport pumps conditioning drug efflux from pathogen's cell), and ERG11 gene (encoding lanosterol 14α-demethylase). Test material was 120 strains of Candida albicans (60 resistant and 60 susceptible to azole drugs) obtained from clinical samples. The first stage of experiment assessed the expression of CDR1, CDR2, MDR1 and ERG11 genes by Q-PCR. The impact of ERG11 gene's mutations on the expression of this gene was analysed. The final stage of the experiment assessed the level of genome methylation of Candida albicans strains. An increase in the expression of CDR2, MDR1 and ERG11 was observed in azole-resistant strains of Candida albicans in comparison to strains sensitive to this class of drugs. Furthermore, 19 changes in the sequence of ERG11 were detected in tested strains. Four of the discovered mutations: T495A, A530C, G622A and A945C led to the following amino acid substitutions: D116E, K128T, V159I and E266D, respectively. It has also been found that statistically five mutations: T462C, G1309A, C216T, C1257T and A945C affected the expression of ERG11. The applied method of assessing the level of methylation of Candida albicans genome did not confirm its role in the development of resistance to azoles. The results indicate however, that resistance of Candida albicans strains to azole drugs is multifactorial.
EN
Head and neck squamous cell carcinoma (HNSCC) is one of the leading cancers by incidence worldwide. The risk of these cancers is strictly associated with alkylation factors present in tobacco smoke. The crucial role in preventing DNA alkylation is played by O6-methylguanine-DNA methyltransferase (MGMT). Dysfunction or lack of MGMT is associated with an increased risk of cancer. The aim of the study was to assess the influence of MGMT polymorphisms: rs12917 and rs11016879 on HNSCC risk and course. The study consisted of 69 HNSCC patients and 242 healthy individuals. Case samples were taken from resected tumour tissue. The control group comprised samples of epithelial cells collected from mucous membranes using swabs. DNA samples were genotyped by employing the 5' nuclease assay for allelic discrimination using TaqMan SNP Genotyping Assays. The significance between distributions of genotypes and alleles was tested using Pearson's χ2 test analysis. Our results indicated that the MGMT rs12917 TT genotype increases the risk of HNSCC. The MGMT rs11016879 AG genotype and A allele were associated with increased HNSCC risk. We noted higher risk of nodal metastasis in rs11016879 AA homozygotes. Mechanisms leading to MGMT enzymatic defect are unknown and hence further studies need to be carried out. Our data suggest that the examined polymorphisms may be considered as potential prognostic factors for HNSCC risk and outcome. Further studies are necessary to verify our results.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.