Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Reaction of Na4TCM (1) (H4TCM = tetra[4-(carboxyphenyl)oxamethyl]methane) with [Cu(CHA)](ClO4)2 (2)(CHA = 1,3,6,8,11,14-hexaaz atricyclo[12.2.1.1.8,11] octadecane) in a DMF-water mixture yields [Cu(CHA)]2[TCM] (3). Structural analysis of [Cu(CHA)]2[TCM]·11H2O (3·11H2O) by single crystal X-ray diffraction reveals strong copper-oxygen bonds between two complex cations and the tetraanion leading to a 3D coordination network (zwitterionic structure), consolidated through additional NH...O=C hydrogen bonding within the cation/anion association. The resulting coordination geometry around a copper atom is a distorted square pyramidal with an oxygen atom of the anionic ligand in the apical position. A 3D supramolecular network is developed in the crystal based only on NH...OC hydrogen bonds between the macrocyclic metallic tecton and the carboxylate groups of neighboring 3D coordinated (zwitterionic) moieties. The pseudotetrahedral TCM4− tetraanionic ligand induces a diamondoid architecture formed of large distorted adamantanoid cages. [...]
2
Content available remote

Catalytic reduction of sulfuric acid to sulfur dioxide

88%
EN
The reduction of H2SO4 to SO2 occurs with a relatively good efficiency only at high temperatures, in the presence of catalysts. Some experimental results, regarding conversion of sulfuric acid (96 wt.%) to sulfur dioxide and oxygen, are reported. The reduction has been performed at 800 – 900°C and atmospheric pressure, in a tubular quartz reactor. The following commercial catalysts were tested: Pd/Al2O3 (5 wt.% and 0.5 wt.% Pd), Pt/Al2O3 (0.1 wt.% Pt) and α-Fe2O3. The fresh and spent catalysts were characterized by X-Ray diffraction and BET method. The highest catalytic activity was determined for 5 wt.% Pd/Al2O3, a conversion of 80% being obtained for 5 hours time on stream, at 9 mL h−1 flow rate of 96 wt.% H2SO4. A conversion of 64% was determined for 0.5 wt.% Pd/Al2O3 and 0.1 wt.% Pt/Al2O3. For α-Fe2O3, a less expensive catalyst, a conversion of 61% for about 60 hours was obtained. [...]
EN
Structural, morphological and magnetic properties of Zn1−xCoxO (x = 0.01 and 0.03) powdered materials are presented. XRD studies reveal a wurtzite-type structure, while the formation of a Co3O4 secondary phase was evidenced by Raman spectroscopy. A ferromagnetic behaviour with low Curie temperature was evidenced by Electron Paramagnetic Resonance (EPR) investigation. We suggest that the origin of the ferromagnetism in Zn1−xCoxO powders is probably due to the presence of the mixed cation valence of Co ions via a double-exchange mechanism rather than the real doping effect.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.