Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
A multicomponent vanadate M_3Fe_4V_6O_{24} sample with non-magnetic M = Zn(II) ions was synthesized by the solid state reaction method using stoichiometric mixtures of the 80mol% FeVO_4 and 20mol% Zn_3(VO_4)_2. The temperature dependence of the EPR spectra was performed in the 90-280 K temperature range. The resonance field and the integrated intensity of the EPR line showed minimum value of both parameters at≈200 K. It is suggested that a part of the sample is displaying tendency to form an antiferromagnetic ordered state (or the magnetic clusters) above this temperature while below the ferromagnetic interaction of the main part of material is dominating. This behaviour is attributed to the inherent magnetic inhomogeneity of the system due to the presence of the ferromagnetic or antiferromagnetic spin clusters.
2
76%
EN
Magnetic properties of four nFeVO₄/(1-n)Co₃V₂O₈ samples obtained in reactions between FeVO₄ and Co₃V₂O₈ (n = 0.96, 0.86, 0.84 and 0.83, samples designated S1, S3, S4, S5, respectively) have been investigated by DC magnetisation in field cooling and zero-field-cooling modes and EPR. DC magnetic susceptibility showed paramagnetic behavior of all samples in high-temperature range (T > 20 K) and transition to antiferromagnetic state at 16-18 K (depending on sample iron content). Additional magnetic freezing at 8 K was registered for S3-S5 samples containing larger amount of cobalt. The Curie-Weiss law in 100-300 K temperature range indicates that Co²⁺ is in the high-spin state (S = 3/2). From the parameters of the hysteresis loop observed for the samples it was calculated that 0.58% of all magnetic (Fe³⁺, Co²⁺) ions were involved in the ferromagnetic states. EPR spectra of the samples were recorded in high temperature range (T > 90 K). The temperature dependence of the spectral parameters (resonance field, linewidth, integrated intensity) suggested the Fe³⁺ high-spin ions coupled by antiferromagnetic interaction and clusters of ions play major role in EPR spectra.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.