Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  zirconium dioxide
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Calcination and microwave-assisted hydrothermal processing of precipitated zirconium dioxide are compared. Characterization of synthesized products of these two technologies is presented. The infiuence of thermal treatment up to 1200oC on the structural and spectroscopic properties of the so-obtained zirconium dioxide is examined. It was found that initial crystallization of material inhibits the crystal growth up to the 800oC (by means of XRD and TEM techniques), while the material crystallized from amorphous hydroxide precursor at 400oC, exhibits 26 nm sized crystallites already. It was found using the TG technique that the temperature range 100–200oC during the calcination process is equivalent to a microwave hydrothermal process by means of water content. Mass loss is estimated to be about 18%. Based on X-ray investigations it was found that the initial hydroxide precursor is amorphous, however, its luminescence activity suggests the close range ordering in a material.
2
Content available remote

Afterglow and thermoluminescence of ZrO2 nanopowders

88%
EN
A careful study of the phosphorescence afterglow and the thermoluminescence (TL) of sol-gel-prepared m-ZrO2 nanocrystalline powders in an extended temperature range −100 to 300 °C was carried out. Wavelength-resolved TL proved the existence of a single active luminescence centre in this temperature range. A TL method based on various heating rates was used to derive more reliable trap depths of 0.75, 0.95, 1.25, 1.46 and 1.66 eV whereas deconvolution methods provided somewhat lower values. The most intense room-temperature afterglows (that were easily observable beyond 1000 s) were obtained from samples annealed at 1250 and 1500 °C, and were attributed mainly to depopulation of the 1.25 eV traps.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.