Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  youth swimmers
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The aim of the study was to evaluate the effects of the dry-land power training on swimming force, swimming performance and strength in youth swimmers. Twenty six male swimmers, free from injuries and training regularly at least 6 times a week, were enrolled in the study and randomly assigned to one of two groups: experimental (n=14, mean age 14.0 ± 0.5 yrs, mean height 1.67±0.08 m and mean body mass 55.71 ±9.55 kg) and control (n=12, mean age 14.1 ± 0.5 yrs, mean height 1.61±0.11 m and mean body mass 49.07 ±8.25 kg). The experimental group took part in a combined swimming and dry-land power training. The control group took part in swimming training only. The training programmes in water included a dominant aerobic work in front crawl. In this research the experimental group tended to present slightly greater improvements in sprint performance. However, the stroke frequency insignificantly decreased (-4.30%, p>0.05) in the experimental group and increased (6.28%, p>0.05) in the control group. The distance per stroke insignificantly increased in the experimental group (5.98%, p>0.05) and insignificantly decreased in the control group (-5.36%, p>0.05). A significant improvement of tethered swimming force for the experimental group (9.64%, p<0.02) was found, whereas the increase was not statistically significant in the control group (2.86%, p>0.05). The main data cannot clearly state that power training allowed an enhancement in swimming performance, although a tendency to improve swimming performance in tethered swimming was noticed.
EN
The purposes of this study were to compare the kinematic variables in youth swimmers during the grab start between sexes and to investigate the relationship between body composition and kinematic variables of the participants. Six female (Mage = 13.71 ± 0.49 yrs) and seven male (Mage = 14.00 ± 1.07 yrs) swimmers participated in this study. All participants were required to perform grab start tests in random order (three trials by each participant), while the best attempt was analyzed. Nineteen kinematic parameters consisting of block time, flight time, flight distance, total time, total distance, horizontal and vertical displacement of the center of mass (CM) at take-off, horizontal and vertical displacement of the CM at entry, height of take-off and entry, relative height of take-off, horizontal and vertical velocity of the CM at take-off, horizontal and vertical velocity of the CM at entry, angle of take-off, angle of entry and angle of knee at block were analyzed. Out of the 19 evaluated kinematic parameters, a statistical difference between the female and male group was found only in the total distance. Therefore, both female and male groups are considered as only one group and merged after analyzing the results. Statistical analysis showed positive and negative correlations between horizontal / vertical velocity of CM at take-off and several kinematic variables (e.g. angle of entry (rhorizontal = -.868, p=.000 / rvertical = .591, p=.02), total distance (rhorizontal = .594, p=.02 / rvertical = .54, p=.04), and height of take-off (rvertical = .888, p=.000), respectively). On the other hand, positive and negative correlations were found between somatotype components and several kinematic variables (e.g. horizontal displacement of CM at entry (rendomorphy = -.626, p=.013), angle of entry (rmesomorphy = -.686, p=.005 / rectomorphy = .52, p=.047), total distance (rendomorphy = -.626, p=.012), and height of take-off (rendomorphy = -.633, p=.011 / rectomorphy = .515, p=.05)). In conclusion, results show that in order to be successful at grab start performance, a swimmer should target to get higher horizontal velocity of CM at take-off and optimize the angle of take-off so this movement form supplies more total distance to the swimmer. Coaches should consider improving start performance and adding start training to regular training sessions. Moreover, youth male and female swimmers can participate together in the grab start training
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.