Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  xanthan gum
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
|
|
vol. 33
|
issue 1
141-151
EN
This study was aimed at evaluating the possibility to use the Friedrich-Braun fractional derivative rheological model to assess the viscoelastic properties of xanthan gum with rice starch and sweet potato starch. The Friedrich-Braun fractional derivative rheological model allows to describe viscoelastic properties comprehensively, starting from the behaviour characteristic of purely viscous fluids to the behaviour corresponding to elastic solids. The Friedrich-Braun fractional derivative rheological model has one more virtue which distinguishes it from other models, it allows to determine the relationship between stress and strain and the impact of each of them on viscoelastic properties on the tested material. An analysis of the data described using the Friedrich-Braun fractional derivative rheological model allows to state that all the tested mixtures of starch with xanthan gum form macromolecular gels exhibiting behaviour typical of viscoelastic quasi-solid bodies. The Friedrich-Braun fractional derivative rheological model and 8 rheological parameters of this model allow to determine changes in the structure of the examined starch - xanthan gum mixtures. Similarly important is the possibility to find out the trend and changes going on in this structure as well as their causes.
EN
The aim of this study was to develop a technical process and composition of mucoadhesive hydrogels containing benzocaine, based on different concentration ratios of the natural polymers chitosan and xanthan gum. For this purpose, lyophilisates of polymeric complexes with the quantitative ratios of 0.5:1, 1:1 and 1:0.5 chitosan to xanthan gum were prepared and subsequently used to prepare hydrogels of various concentrations. The physicochemical properties and pharmaceutical availability of benzocaine were evaluated and diffractograms and Fourier-transform infrared spectra of individual polymers and their polyelectrolyte complexes were compared. The 1:1 formulation exhibited the highest water absorption capacity and the gels showed the highest viscosity and the shortest blurring times. More chitosan increased carrier texture parameters, including hardness, cohesiveness and consistency, whereas more xanthan gum led to the longest gel blurring times and improved carrier stability. The concentration ratio of chitosan to xanthan gum in lyophilisates determined the viscosity, texture, spreadability and blurring time of the gels. Increases in lyophilisate percentage in the gels also affected the physicochemical properties of the carrier. In addition, the proportions of polymers in the mixture did not influence the availability of the drug from the prepared gel; this factor appears to depend more on the lyophilisate content in the carrier. Variations in the ratio of chitosan to xanthan gum in the polymer complex as well as lyophilisate percentage in the gel may impact the properties of the hydrogel and its efficacy as a carrier for therapeutic substances administered to the oral cavity mucosa.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.