Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Journals help
Years help
Authors help
Preferences help
enabled [disable] Abstract
Number of results

Results found: 26

Number of results on page
first rewind previous Page / 2 next fast forward last

Search results

Search:
in the keywords:  wastewater
help Sort By:

help Limit search:
first rewind previous Page / 2 next fast forward last
EN
Most industries in developing countries of the world, especially hospitals and other clinical settings, lack wastewater treatment facilities, and as such, untreated wastewater from their operations are discharged into water bodies without any form of treatment. This study aimed at the antibiotic sensitivity profile and ESBL production in E. coli isolated from untreated hospital wastewater before discharge into the environment. Untreated wastewater from two hospitals, a State Government-owned hospital (SGH) and a privately-owned hospital (POH) with no wastewater treatment facilities were sampled for a period of four months. Isolation of E. coli was carried out using the pour plate technique on Eosin Methylene Blue agar, while identification was carried out using conventional methods. Determination of ESBL production was done by means of the Double Disc Synergy Technique and antibiotic sensitivity testing was carried out by employing the disc diffusion method. A total of fifty-eight (58) E. coli were obtained: SGH at 55 and POH at 3. Herein, in 100% of the total count, resistance was indicated for ampicillin and ertapenem, while 14%, 11%, 16% and 57% of the total count were resistant to ceftazidime, cefpodoxime, cefotaxime and amoxicillin-clavulanate, respectively. In addition, 94.8% showed resistance to tetracycline, 19% to ciprofloxacin, 6.9% to gentamycin, 39.7% to chloramphenicol and 55% and 47% to sulfamethoxazole-trimethoprim and nalidixic acid, respectively. Furthermore, 94.8% of all the isolates were multidrug resistant (MDR), while 29.3% were ESBL positive. Wastewater from the two hospitals under study contained ESBL positive and MDR E. coli, suggesting a need to forestall a potential threat to public health by treating the wastewater generated by both hospitals before discharge into the environment.
EN
In this work, degradation of the anthraquinonic dye Acid Blue 25 by non-thermal plasma at atmospheric pressure with and without photocatalyst is investigated. Titanium dioxide (TiO2) is used as a photocatalyst. The dye degradation by plasma in the presence of TiO2 is investigated as a function of TiO2 concentration, dye concentration and pH. The degradation rate is higher in acidic solutions with pH of 2 to 4.3, especially at pH 2, and decreases to 0.38 mg L-1 min-1 with the increase of pH from 2 to 5.65. A similar effect is observed in basic media, where a higher degradation rate is found at pH = 10.3. The degradation rate increases in the presence of TiO2 compared to the discharge without photocatalysis. The results show that the degradation of the dye increases in the presence of TiO2 until the catalyst load reaches 0.5 g L-1 after which the suppression of AB25 degradation is observed. The results indicate that the tested advanced oxidation processes are very effective for the degradation of AB25 in aqueous solutions.
3
100%
EN
The paper presents the results of the selection of the flocculent and coagulant types as well as the evaluation of the best parameters of treatment of wastewater deriving from meat-bone meal (MBM) production. The efficiency of purification depends on the composition of the coagulant and flocculent as well as the magnitude of the applied dose. The use of ferrous sulfate PIX 113 coagulant assured the highest reduction of the contamination content in filtrate, resulting in the reduction of color of wastewater by 96.8%, turbidity by 99.2%, and the phosphorus content by 99.9% and nitrogen by 92.4%, with the Chemical Oxygen Demand (COD) being reduced by 62.8%. The X-ray method proved the significant presence of phosphorus salts in the content of sediment. The moisture content in the sediment varied from 45 to 78.5%. The elaborated method of pretreatment of wastewater from meat-bone meal unit was verified on an industrial scale. A very high reduction of the phosphorus content in filtrate (> 99.9%), and a significant reduction of COD as well as nitrogen and suspended solid contents (90−95%) were presented. A high reduction of contamination in filtrate increases the production capacity of the existing biological treatment plant, in the next step of treatment of filtrate in the biological treatment unit.
4
Content available remote

Low Bod Determination Methods: The State-of-the-Art

100%
EN
Biochemical Oxygen Demand (BOD) is an important factor used to measure water pollution. This article reviews recent developments of microbial biosensors with respect to their applications for low BOD estimation. Four main methods to measure BOD using a biosensor are described: microbial fuel cells, optical methods, oxygen electrode based methods and mediator-based methods. Each of them is based on different principles, thus a different approach is required to improve the limit of detection. A proper choice of microorganisms used in the biosensor construction and/or sample pre-treatment processes is also essential to improve the BOD lower detection limit.
EN
Investigations of processes occurring during wastewater treatment have progressed beyond the stage of technology. Currently, great numbers of representatives of diverse specialist research apply increasingly sophisticated measurement methods that have not been employed in this field of science. One of the methods is IRMS (Isotope Ratio Mass Spectrometry). Tracking changes in the ratios of biogenic element isotopes is useful in eg identification and monitoring of investigated processes. Since the IRMS technique has hardly been used for investigations of the wastewater treatment process, pilot research should be instigated to determine the isotope ratios occurring naturally in the process. The aim of the study was to determine changes in carbon and nitrogen isotope ratios at the successive stages of the technological line in wastewater treatment plants. The study material comprised: i) suspensions of raw sewage and mixtures of wastewater and activated sludge; ii) gases sampled from the volume of the suspensions; iii) gases sampled from the air above the suspension surface. The research material originated from the facilities of “Hajdow” municipal wastewater treatment plant in Lublin (SE Poland). The samples were analysed for the carbon and nitrogen isotope ratios, and the concentrations of the gases as well as total organic carbon (TOC), inorganic carbon (IC), Kjeldahl nitrogen (KN), dry weight, pH, and Eh were determined. The results obtained suggest that: i) the IRMS technique can be successfully applied in investigations of processes occurring during wastewater treatment; ii) isotope ratios in the carbon and nitrogen compounds (CO2 and N2) both in the suspensions and gases contained therein and in the air above them differ from each other and change at the different stages of the treatment process; iii) further research is indispensable in order to identify processes responsible for fractionation of carbon and nitrogen isotopes.
Open Chemistry
|
2005
|
vol. 3
|
issue 3
377-386
EN
A plasma induced degradation process has been studied to treat 4-nitrotoluene (4-NT) present as an aqueous pollutant. The plasma was locally generated from a glow discharge around a tip of a platinum anode in an electrolytic solution. The influence of initial pH and Fe2+ on the degradation was examined. Major intermediates resulting from the degradation process were identified. Amongst the aromatic intermediates, p-hydroxybenzoic acid was the predominant degradation product. The formation of oxalic acid, malic acid was also observed. The final products of degradation were NH4+, NO3− and CO2. Based on the analysis of intermediates and the kinetic considerations, the degradation was shown to follow a pseudo-first order reaction hence, a possible reaction pathway was proposed.
EN
Cocaine consumption is one of the most relevant public health issues in America and Europe. There are different methods to estimate cocaine consumption, with different levels of accuracy. Although surveys is one of the most employed methods, it usually underestimates cocaine consumption. Recent studies have validated the use of wastewater analysis as the method that would provide more accurate results, as it is based on the analysis of residues of illicit drugs and their metabolites that are excreted by human flow through wastewater treatment plants. This study aims to estimate cocaine consumption in the southeast of Spain by wastewater analysis. Samples were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). According to this analysis, cocaine consumption has been estimated at 410,6 milligrams per day and per 1000 inhabitants, a higher result than that obtained at other European cities of similar size. Highest consumption occurs during the weekend, which is consistent with cocaine being categorized as a recreational drug. The results of this analysis show that cocaine use is an increasing public health and economic problem. Finally, wastewater analysis offers different options to estimate its use at this region of Spain.
EN
The results of dehydrochlorination of 1,3-dichloropropan-2-ol to epichlorohydrin are reported. The process ran in the reaction-stripping column system with a continuous removal of epichlorohydrin in a steam stream. The influence of 10 wt% alkali solution (NaOH, Ca(OH)2) and the method of distillate collection on the 1,3-dichloropropan-2-ol conversion, selectivity of transformation to epichlorohydrin and by-products, and the composition of wastewater have been analysed.
EN
Metagenomic studies have become increasingly popular. They allow for the estimation of biodiversity in complex populations. This diversity presents an enormous but largely unexpected genetic and biological pool and can be exploited for the recovery of novel genes, entire metabolic pathways and their products. Generally metagenomic study is a genomic analysis of organisms by direct extraction and cloning of DNA from their natural environment. The most common problems of modern metagenomics are as follows: majority of the microorganisms present in the environment cannot be cultivated by standard techniques, DNA extraction methods are not very effective, isolated DNA is contaminated with various compounds, a choice for a screening method is not obvious.
EN
Flood events often have severe socio-economic impacts, such as loss of lives and livelihoods, food, water and energy scarcity, and adverse impacts on human health and the environment. As far as feasible, human interference into the processes of nature should be reversed, compensated and, in the future, prevented. This study explores the possible solutions for the drainage system to ensure peak performance that might be adopted in España Boulevard, Manila. It aims to describe the wastewater management system to prevent and protect the adverse impact of flood events on human health and safety, on valuable goods and property, and on the aquatic and terrestrial environment.
first rewind previous Page / 2 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.