A vapour permeation of water and ethanol through homogenous chitosan and alginate membranes was investigated. The influence of the polymer matrix and crosslinking agents, and measurement protocol on the transport properties were discussed. The conducted experiments showed the greater separation factor, better stability and resistant to solvents for chemically crosslinked membranes. On the other hand, stronger association of the matrix, than the physical, caused decrease of vapour fluxes.
Membranes were prepared using three chitosans with different molecular weights and degrees of deacetylation. The influence of chitosan features on membrane physicochemical properties, i.e. degree of swelling, contact angle and tensile strength, as well as membrane separation properties in ethanol dehydration by the vapour permeation process are discussed. The conducted experiments showed that an increase in the chitosan molecular weight led to an increase in the membrane surface contact angle concomitant with a decrease in the material selectivity coefficient. On the other hand, an increase in the chitosan degree of deacetylation caused a reduction in ethanol and improved the water permeate flux. There was greater selectivity in the test process for membranes prepared from chitosan with the lowest molecular weight.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.