Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  uranium
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We investigate the electronic and band structure for the (8; 0) single-wall carbon nanotube (SWCNT) with a europium (Eu) and a uranium (U) atom outside by using the first-principles method with the density functional theory (DFT). The calculated band structure (BS), total density of state (TDOS), and projected density of state (PDOS) can elucidate the differences between the pure (8; 0) SWCNT and the nuclei outside the SWCNT. The indirect band gaps are obtained when Eu and U atom are put outside the (8; 0) CNT; they are 0.037 eV and 0.036 eV, respectively, which is much smaller than 0.851 eV for pure CNT. Compared with pure (8; 0) SWCNT, the bottom of the conduction band moves down by 0.383 eV and 0.451 eV with the Eu and U outside, and the top of valence band moves up by 0.127 eV and 0.162 eV, respectively. More significantly, the top of the valence band has exceeded the fermi-level. So, a single nucleus changes the semiconductor character of pure nanotube to semi-metal.
EN
Partitioning of uranium and neodymium was studied in a ‘molten chloride salt - liquid Ga-X (X = In or Sn) alloy’ system. Chloride melts were based on the low-melting ternary LiCl-KCl-CsCl eutectic. Nd/U separation factors were calculated from the thermodynamic data as well as determined experimentally. Separation of uranium and neodymium was studied using reductive extraction with neodymium acting as a reducing agent. Efficient partitioning of lanthanides (Nd) and actinides (U), simulating fission products and fissile materials in irradiated nuclear fuels, was achieved in a single stage process. The experimentally observed Nd/U separation factor valued up to 106, depending on the conditions.
EN
The natural radionuclide (238U, 226Ra, 232Th and 40K) contents in soil were determined for three different regions of Bulgaria using high-resolution gamma-ray spectrometric analysis. A comparison of the dynamics of their behavior throughout the years was performed. Bulgaria is a country with intensive uranium mining activities. That is why radiological monitoring of closed uranium mining facilities in different regions of the country are obligatory and of great interest. This work presents results from such investigations made in regions where remediation was necessary. The results have been evaluated according to Bulgarian radionuclide environment contamination legislation.
Open Chemistry
|
2007
|
vol. 5
|
issue 3
868-879
EN
A rapid method for calculating the time dependence of activities of individual radionuclides in genetically coupled decay series has been proposed. The method is based on the mathematical procedure, in which the matrix method is used for calculating a set of decay equations given in the vector form. The developed method is computerized and uses the modern Scilab software. This simple method eliminates certain drawbacks of older methods used previously for this purpose and is applicable to even solve calculations which are not easily treatable with the older methods. Some practical examples of such calculations are presented. Moreover, the new method is universal and it also enables a more general approach to the problem of the calculation of decay series in nuclear chemistry. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.