Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  toxicology
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Nanosilver - does it have only one face?

100%
EN
Silver nanoparticles (NPs) have at least one dimension of a particle smaller than 100 nm and contain 20-15,000 silver atoms. Due to its antibacterial activity nanosilver (NS) is used for medical purposes. NS particles can be obtained by various methods. Potentially, the best method of the NS synthesis for medical purposes is based on a brief flow of electric current between two silver electrodes placed in deionized water. It is accepted that the major antibacterial effect of silver is its partial oxidation and releasing silver ions, which interact with thiol groups of peptidoglicans of bacterial cell wall, and proteins of the cell membrane causing cell lysis. Silver ions can also bind to bacterial DNA preventing its replication and stopping synthesis of bacterial proteins. The rise in exposure to silver NPs has spurred interest into their toxicology. NS undergoes a set of biochemical transformations including accelerated oxidative dissolution in gastric acid, binding to thiol groups of serum and tissue proteins, exchange between thiol groups, sulfides and selenides, binding to selenoproroteins and photoreduction in skin to zerovalent metallic silver. Animal studies have shown that exposure to NS may lead to liver and spleen damage. NS can also stimulate an increased secretion of proinflammatory cytokines by monocytes. As a spectrum of NS applications is still growing, the complex evaluation of a safety of its use becomes an important task. This requires an elucidation of not only the influence of NS on human cells and organism, but also its biotransformation in organism and in environment.
EN
Polymeric nanoparticles based on poly-N-isopropylacrylamide (pNiPAM NPs) and their bio-medical applications have been widely investigated in recent years. These tunable nanoparticles are considered to be great candidates for drug delivery systems, biosensors and bioanalytical devices. Thus, the biocompatibility and toxicity of these nanoparticles is clearly a crucial issue. In this work, the cytotoxicity of thermo-responsive pNiPAM nanoparticles was studied, followed by a detailed analysis of the NPs morphology in growing cell cultures and their 3D structure. Cytotoxic examination was conducted for two cell cultures - HeLa (cervical cancer cell line) and HeK293 (human embryonic kidney cell line), employing MTT (3-4, 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide) assay and viability tests. We used Cryo-SEM (scanning electron microscopy) and fluorescence microscopy (IN Cell Analyzer) in order to investigate the morphological structure of the polymer network. We show that pNiPAM nanoparticles do not exhibit any cytotoxicity effects on the investigated cell lines. Additionally, we report that the pNiPAM nanoparticle based scaffold promotes cell growth.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.