Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  titania
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Sensitized mesoporous titania is of increasing interest for catalysis and photovoltaic devices such as dye-sensitized solar cells (DSCs). For photovoltaic applications, the catalytic properties of TiO2 can cause degradation of the dyes during device fabrication. This is especially the case if natural sensitizers are used. We addressed this issue by fabrication of carotenoic acid sensitized solar cells under inert and ambient assembly conditions. The DSCs were investigated by currentvoltage and quantum efficiency measurements. Further characterization of the cells was made using impedance spectroscopy. The conversion efficiency of the DSCs prepared under inert conditions improved by at least 25% and the devices showed an enhanced reproducibility. The improvement of the DSCs correlated with the conversion efficiency of the sensitizers under inert conditions. We conclude that the photocatalytic bleaching depends on the electron injection efficiency of the sensitizer. Hence carotenoic acids support their own degradation. However, the photocatalytic decomposition of the sensitizers can be avoided by fabrication of the DSCs under inert conditions.
EN
In this work, at first large pore size SiO₂ mesostructure was prepared using amphiphilic triblock copolymer (P123) as a template, tetraethyl orthosilicate (TEOS) as Si source and hexane as micelle expander by hydrothermal procedure. Separately, a stable transparent titania sol was synthesized using titanium isopropoxide (TTIP) as titanium source. Then achieved mesoporous silica structure was stirred in the titania sol resulting in formation of a titanium dioxide anatase layer on the silica structure. The sample was characterized with wide angle X-ray diffraction, N₂ adsorption-desorption analysis, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, and energy dispersive X-ray spectroscopy maps of silicon and titanium. The photocatalytic performance of prepared composite material was evaluated using UV-vis spectroscopy as well. The prepared material showed much higher photodegradation of methyl blue (MB) than commercial P-25 which was attributed to high surface area (290 m²/g), anatase phase, small crystallite size and accessible pores.
Acta Physica Polonica A
|
2018
|
vol. 133
|
issue 5
1150-1159
EN
Iron-carbon-codoped mesoporous titania nanocrystallines were synthesized by a modified sol-gel method based on the self-assembly technique using polyethylene glycol sorbitan monostearate (Tween 60) as template. The samples were characterized by X-ray diffraction, N_{2} adsorption, UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, photoluminescence, electrochemical impedance spectroscopy, and transient photocurrent responses analysis. The photocatalytic activity of Fe-C-codoped TiO_{2} nanoparticles were evaluated by the degradation of methyl orange (MO), p-nitrophenol (PNP) and biphenol A (BPA) under visible light irradiation. It was found that the as-prepared Fe-C-codoped TiO_{2} sample showed excellent photocatalytic activity compared to undoped TiO_{2}. The highest activity was obtained for Fe-C-codoped TiO_{2} sample calcined at 520°. The enhanced photocatalytic performances were attributed to the synergetic effects of good crystallizing action, appropriate phase composition and slow recombination rate of photogenerated charge carriers. Based on the experimental results, a reasonable photocatalytic mechanism of as-prepared Fe-C-codoped TiO_{2} photocatalysts was also proposed and discussed.
4
Content available remote

Photodegradation of organic compounds in water

88%
EN
The application of photocatalytic processes for the decontamination treatment of polluted water has inspired very extensive studies. Titanium dioxide with its large band gap energy and appropriate redox potential was found as one of the most promising semiconductors for the photodegradation of pollutants in the water as well as in gas phase. The titania-silica aerogels obtained by a simple co-hydrolysis method was applied in the photodegradation of the model organic compound. Different ageing times and heat treatment temperatures were found to influence both the activity and the textural properties of the photocatalysts. The obtained aerogels are efficient photodegradation catalysts of methylene blue and allow a removal up to 98 and 78% of the model pollutant from 20 and 500 ppm solutions, respectively.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.