Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 15

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  synchronization
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this paper we numerically investigate a model of a diffusively coupled ring of cells. To model the dynamics of individual cells we propose a map with cell affinity, which is a generalization of the logistic map. First, the basic features of a one-cell system are studied in terms of the Lyapunov exponent, Kolmogorov complexity and Sample Entropy. Second, the notion of observational heterarchy, which is a perpetual negotiation process between different levels of the description of a phenomenon, is reviewed. After these preliminaries, we study how the active coupling induced by the consideration of the observational heterarchy modifies the synchronization property of the model with N=100 cells. It is shown numerically that the active coupling enhances synchronization of biochemical substance exchange in several different conditions of cell affinity.
6
Content available remote

Dynamics analysis of fractional order Yu-Wang system

88%
Open Physics
|
2013
|
vol. 11
|
issue 10
1514-1522
EN
Fractional order version of a dynamical system introduced by Yu and Wang (Engineering, Technology & Applied Science Research, 2, (2012) 209–215) is discussed in this article. The basic dynamical properties of the system are studied. Minimum effective dimension 0.942329 for the existence of chaos in the proposed system is obtained using the analytical result. For chaos detection, we have calculated maximum Lyapunov exponents for various values of fractional order. Feedback control method is then used to control chaos in the system. Further, the system is synchronized with itself and with fractional order financial system using active control technique. Modified Adams-Bashforth-Moulton algorithm is used for numerical simulations.
Open Physics
|
2013
|
vol. 11
|
issue 6
824-835
EN
In this paper, we study the chaotic dynamics of a Variable-Order Fractional Financial System (VOFFS). The Variable-Order Fractional Derivative (VOFD) is defined in Caputo type. A necessary condition for occurrence of chaos in VOFFS is obtained. Numerical experiments on the dynamics of the VOFFS with various conditions are given. Based on them, it is shown that the VOFFS has complex dynamical behavior, and the occurrence of chaos depends on the choice of order function. Furthermore, the chaos synchronization of the VOFFS is studied via active control method. Numerical simulations demonstrate that the active control method is effective and simple for synchronizing the VOFFSs with commensurate or incommensurate order functions.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.