Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  surface wave
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The paper investigates the options to increase the production yield of temperature compensated surface acoustic wave (SAW) devices with a defined range of operational frequencies. The paper focuses on the preparation of large wafers with SiO2 and AlN/Si3N4 depositions. Stability of the intermediate SiO2 layer is achieved by combining high power density UV radiation with annealing in high humidity environment. A uniform thickness of the capping AlN layer is achieved by local high-rate etching with a focused ion beam emitted by the FALCON ion source. Operation parameters and limitations of the etching process are discussed.
EN
This study is focused on exploring the feasibility of an all-optic surface scanning method in determining the size and position of a submerged, laser generated, optoacoustic (OA) source. The optoacoustic effect in this case was generated when the absorption of a short electromagnetic pulse in matter caused a dielectric breakdown, a plasma emission flash and a subsequent acoustic wave. In the experiment, a laser pulse with λ = 1064 nm and 12 ns pulse length was aimed at a volume of deionized water. When the laser beam was focused by a f = 16 mm lens, a single dielectric breakdown spot occurred. When a f = 40 mm was used several breakdowns in a row were induced. The breakdowns were photographed using a double shutter camera. The acoustic wave generated by the dielectric breakdowns were detected at a point on the water surface using a laser Doppler vibrometer (LDV). First, the LDV signal was used to calculate the speed of sound with an accuracy of 10 m/s. Secondly, the location and length of the dielectric breakdown was calculated with an accuracy of 1 mm. The calculated position matched the breakdown location recorded by a camera. The results show that it is possible to use LDV surface measurements from a single spot to determine both the position and length of the OA source as well as the speed of sound in the medium. Furthermore, the LDV measurements also show a secondary peak that originates from the OA source. To unravel the origin and properties of this interesting feature, further investigations are necessary
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.