Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  stochastic resonance
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
Open Physics
|
2012
|
vol. 10
|
issue 3
625-630
EN
We study a model for a monolayer single adsorbate system used to describe pattern formation on adsorbates with lateral interactions, when it is submitted to pressure oscillations. Through numerical and analytical (based on a two-state approximation) methods to analyze the existence of stochastic resonance in such a bistable system. This is a first step toward the study of resonant phenomena in adsorbate systems with moving fronts and/or with presence of micro-reactors or spots.
Open Physics
|
2009
|
vol. 7
|
issue 3
601-606
EN
The stochastic resonance (SR) phenomenon induced by a multiplicative periodic signal in a logistic growth model with correlated noises is studied by using the theory of signal-to-noise ratio (SNR) in the adiabatic limit. The expressions of the SNR are obtained. The effects of multiplicative noise intensity α and additive noise intensity D, and correlated intensity λ on the SNR are discussed respectively. It is found that the existence of a maximum in the SNR is the identifying characteristic of the SR phenomena. In comparison with the SR induced by additive periodic signal, some new features are found: (1) When SNR as a function of λ for fixed ratio of α and D, the varying of α can induce a stochastic multi-resonance, and can induce a re-entrant transition of the peaks in SNR vs λ; (2) There exhibits a doubly critical phenomenon for SNR vs D and λ, i.e., the increasing of D (or λ) can induce the critical phenomenon for SNR with respect to λ (or D); (3) The doubly stochastic resonance effect appears when α and D are simultaneously varying in SNR, i.e., the increment of one noise intensity can help the SR on another noise intensity come forth.
EN
The phenomenon of stochastic resonance (SR) in a tumor growth model under the presence of immune surveillance is investigated. Time delay and cross-correlation between multiplicative and additive noises are considered in the system. The signal-to-noise ratio (SNR) is calculated when periodic signal is introduced multiplicatively. Our results show that: (i) the time delay can accelerate the transition from the state of stable tumor to that of extinction, however the correlation between two noises can accelerate the transition from the state of extinction to that of stable tumor; (ii) the time delay and correlation between two noises can lead to a transition between SR and double SR in the curve of SNR as a function of additive noise intensity, however for the curve of SNR as a function of multiplicative noise intensity, the time delay can cause the SR phenomenon to disappear, and the cross-correlation between two noises can lead to a transition from SR to stochastic reverse-resonance. Finally, we compare the SR phenomenon for the multiplicative periodic signal with that for additive periodic signal in the tumor growth model with immune surveillance.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.