Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  skinfolds
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The study of elite basketball players’ anthropometric characteristics alongside those of body composition contributes significantly to their profiling as professional athletes and plays an important role in the selection process, as these characteristics can have a significant impact on performance. In the current study, 110 professional basketball players from a series of Spanish professional Leagues (ACB, LEB and EBA) and youth level National Teams (U20 and U18) had their anthropometric profiles measured and compared to determine differences between them. Furthermore, all 110 players were divided into three different categories according to their playing position: guards, forwards and centres. The results obtained show no significant differences between players in different competitions in weight, height and the sum of skinfolds. Nonetheless, there were several differences related to body fat content (13.03% in ACB players and 10.52% in the lower categories and National Teams). There were also several differences found between the different playing positions amongst all playing levels in body mass (79.56 ± 2.41, 91.04 ± 1.51 and 104.56 ± 1.73 kg), height (182.28 ± 0.96, 195.65 ± 1.00 and 204.08 ± 0.67 cm), skinfold distribution and perimeters. However, there were no significant differences in body fat content between the different playing positions. The conclusions obtained from this study provide a better understanding to basketball specialists regarding the selection process of players at the elite level, especially on the transition from youth elite programs to men’s elite leagues.
EN
The objective of this study was to determine body composition of university students using four different methods and to find out the extent of agreement between these methods regarding the measurement of body fat percentage in body composition. The study group consisted of 52 students of the P.J. Šafárik University in Košice (29 males and 23 females) whose average age was 22.4 ± 1.9. The study group was formed by convenience sampling. Basic somatometric parameters (body height and weight) were determined and body mass index (BMI) was calculated. The body fat percentage was determined by indirect methods, that is by measuring skinfold thickness at 10 locations on the body using calliper Best II.K501 and by bioimpendance method using devices Bodystat 1500, Omron BF511 (tetra-polar electrode configuration) and Omron BF300 (bi-polar electrode configuration). Profile analysis based on one-sample Hotelling’s test with chi-squared approximation was used for assessing agreement among given four methods of body fat measurements. Statistical analysis of differences among methods was supplemented by the Bland-Altman graphical method with the Wilcoxon paired test. The whole statistical analysis was performed using Excel and software R. Hotteling’s Test (p < 2.2e-16) rejected the hypothesis of agreement between the methods. The greatest influence on this rejection was attributed to the Omron BF511 method. In addition, the results of Wilcoxon’s matched pairs test confirmed the difference of the Omron BF511 method from the other three measurement methods. Bland-Altman graphical analysis showed that the Omron BF511 provided clearly higher values in comparison to the three remaining measurement methods of body fat percentage. The skinfold measurement, the Omron BF300 and the Bodystat 1500 were almost identical. For all the indirect methods it is necessary to validate the accuracy of their measurements using reference methods for the current local population. The skinfold thickness measurement method by Pařízková meets this requirement. Based on our results, the values determined by the devices Omron BF300 and Bodystat 1500 can also be considered applicable. The Omron BF511 does not provide results that could be considered sufficiently accurate for the purposes of research. In order to verify this conclusion the larger group of probands (n = 100 - 300) and a method of repeated measurements would be necessary.
EN
Purpose. Body composition and fat distribution is specific for particular populations and social groups. However, one factor that significantly affects body composition is physical activity. The aim of the study was to assess the various components of body composition in male physical education students with regard to their physical activity level. Methods. A detailed questionnaire survey on physical activity was administered to 252 male students. Based on their responses, the participants were placed into two groups engaged in either moderate or vigorous physical activity. Anthropometric measurements included measures of body height and mass and also skinfold thickness. Body composition was assessed by bioelectrical impedance analysis. Statistical analysis was performed by comparing the groups’ mean values, standard deviations, and percentages of the components of body composition. Results. The groups did not differ significantly for mean body height and mass. No statistically significant differences were found in the absolute amounts of the various components of body composition (except for fat mass) between the groups. Both groups had 61.5 kg of fat-free mass (constituting 80.6% of body mass for the vigorously active and 78.7% of body mass for the moderately active students) and both had 44 kg of muscle mass (constituting 58.3% and 56.1% of body mass, respectively). Students who declared to be involved in vigorous physical activity had 2 kg less and 2% lower fat mass than those involved in moderate physical activity (based on BIA measurements). Measures of skinfold thickness found more subcutaneous fat tissue in the vigorously active group, but the use of a fat index based on body height found them to present less fat. Conclusions. The difference in fat content between physical education students who were more or less physically active was found to be 2 kg and 2%. The results found that physical activity level was not associated with body height, body mass, and the absolute amounts of the other studied components of body composition.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.