Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  scattering theory
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2010
|
vol. 8
|
issue 4
527-541
EN
A simple modification of the definition of the S-matrix is proposed. It is expected that the divergences related to nonzero self-energies are considerably milder with the modified definition than with the usual one. This conjecture is verified in a few examples using perturbation theory. The proposed formula is written in terms of the total Hamiltonian operator and a free Hamiltonian operator and is therefore applicable in any case when these Hamiltonian operators are known.
Open Physics
|
2012
|
vol. 10
|
issue 2
282-319
EN
We present a step by step introduction to the notion of time-delay in classical and quantum mechanics, with the aim of clarifying its foundation at a conceptual level. In doing so, we motivate the introduction of the concepts of “fuzzy” and “free-flight” sojourn times that we use to provide the most general possible definition for the quantum time-delay, valid for simple and multichannel scattering systems, with or without conditions on the observation of the scattering particle, and for incoming wave packets whose energy can be smeared out or sharply peaked (fixed energy). We conclude our conceptual analysis by presenting what we think is the right interpretation of the concepts of sojourn and delay times in quantum mechanics, explaining why, in ultimate analysis, they should not be called “times.”
EN
This theoretical study focuses on junctions between the carbon nanotubes (CNTs) and contacting metallic elements of a nanocircuit. Numerical simulations on the conductance and resistance of these contacts have been performed using the multiple scattering theory and the effective media cluster approach. Two models for CNT-metal contacts have been considered in this paper: a) first principles “liquid metal” model and b) semi-empirical model of “effective bonds” based on Landauer notions on ballistic conductivity. Within the latter, which is a more adequate description of chirality effects, we have simulated both single-wall (SW) and multi-wall (MW) CNTs with different morphology. Results of calculations on resistance for different CNT-Me contacts look quantitatively realistic (from several to hundreds kOhm, depending on chirality, diameter and thickness of MW CNT). The inter-wall transparency coefficient for MW CNT has been also simulated, as an indicator of possible ‘radial current’ losses.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.