Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  sawdust
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
One possible way to improve the solubility of phosphate rock is by co-composting it with organic substances. Four variants of composts were made in a biomass composting bioreactor. Ground phosphate rock (GPR) and shredded barley straw, pine sawdust as well as beet pulp pellets were used as compost components. The four composts were different from one another in the type and amount of organic components. The composts were granulated in a pelleting press. Changes in the solubility of phosphorus were assessed via chemical analyses and P-recovery efficiency calculated from the data achieved in a pot experiment. Solubility of ground phosphate rock was increased resulting from co-composting with organic substances, which meant that bioavailability of phosphorus increased. All the tested composts were characterized by a higher ratio of ammonium citrate soluble phosphorus to total phosphorus than non-composted GPR. Co-composting GPR with all the tested organic components yielded better effects than composting it with straw alone. The four composts were characterized by a slow release of P, which justifies our expectation that they will produce residual effects in the years following their application.
EN
In this article, the sorption properties of chitosan hydrogel beads, beech sawdust and sawdust immobilised on chitosan in relation to Reactive Black 5 (RB5) and Basic Violet 10 (BV10) dyes were compared. In the conducted research, the sorption capacities of the sorbents, sorption pH and the point of zero charge (pHZPC) were determined. For the description of the obtained results, the double Langmuir model has been used. The highest effectiveness of the cationic and anionic dye removal on chitosan hydrogel beads and sawdust immobilised on chitosan was obtained at pH 4, whereas on sawdust, the pH was 3. The best sorbent in relation to the RB5 dye was obtained using chitosan hydrogel beads, and in relation to BV10, it was sawdust. The maximum sorption capacity of chitosan in relation to RB5 was 875.66 mg/g, whereas the sorption capacity of sawdust in relation to BV10 was 30.15 mg/g. The research has shown that the sorbent in the form of sawdust immobilised on chitosan had a high sorption capacity in relation to anionic as well as cationic dyes. Immobilisation of sawdust on chitosan led to the creation of a universal sorbent in relation to cationic and anionic dyes.
|
2020
|
vol. 29
|
issue 3
185-197
EN
In this research sawdust samples of Ecalyptus globulus and Cupressus lusitanica were evaluated for bioethanol productions. The sawdust samples were first pretreated with three white rot fungi alone and also by combining the white rot fungi with mild NaOH and steam. Both the fungal and combined pretreated samples were then hydrolyzed with hydrolytic enzymes from three cellulolytic wood rot fungi. Finally, the resulting sugars were fermented into bioethanol using S. cerevisae in anaerobic conditions. Results obtained, in general, indicated that bioethanol amount produced in all cases of sawdust management was significantly higher than the amount obtained from the un-pretreated sawdust samples (p<0.05). In both fungal alone and combined pretreated sawdust samples, higher ethanol yield was obtained from E. globulus than from C. lusitanica. Similarly, combination with NaOH showed better bioethanol yield over combination with steam. The highest alcohol concentration was obtained when pretreated NaOH-006-2G and hydrolyzed with enzymes from 033-1G and followed by results when pretreated with 005-1G and 003-2G, respectively, and hydrolyzed with enzymes from 033-1G.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.