Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 7

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  rare earth elements
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Phosphogypsum is a noxious industrial waste contributing to global environmental and economic problems. This publication focuses above all on phosphogypsum resulting from the processing of apatite as a phosphorus bearing compound, since it contains considerable amounts of lanthanides due to its magma origin. The possibilities of its waste-free processing are large, however they require the application of suitable technologies, frequently expensive ones, and allowing for the individual characteristics of the given waste. The research works conducted so far confirm the possibility of applying phosphogypsum for the recovery of lanthanides, and the process enhances the removal of remaining impurities, thanks to which the purified calcium sulphate (gypsum) may find application for the production of construction materials.
EN
The growing industrial application of rare earth metals led to great interest in the new technologies for the recycling and recovery of REEs from diverse sources. This work reviews the various methods for the recycling of spent fluorescent lamps. The spent fluorescent lamps are potential source of important rare earth elements (REEs) such as: yttrium, terbium, europium, lanthanum and cerium. The characteristics of REEs properties and construction of typical fl uorescent lamps is described. The work compares also current technologies which can be utilized for an efficient recovery of REEs from phosphors powders coming from spent fluorescent lamps. The work is especially focused on the hydrometallurgical and pyrometallurgical processes. It was concluded that hydrometallurgical processes are especially useful for the recovery of REEs from spent fluorescent lamps. Moreover, the methods used for recycling of REEs are identical or very similar to those utilized for the raw ores processing.
EN
Lead iodide has been recognized as a promising material for room temperature radiation detectors. It has a wide band-gap (∼ 2.3 eV), high atomic numbers (82, 53) and it is environmentally very stable compared to mercuric iodide. Electrical and optical properties of lead iodide grown crystals purified under the influence of selected rare earth elements have been investigated. Photo-luminescence and capacitance-voltage measurements have been performed using different rare earth elements.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.