Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  process simulation
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The production processes included catalytic dehydration of methanol in an adiabatic fixed-bed reactor and two columns product separations. In this study, the technological process for dimethyl ether (DME) synthesis is built on PRO/II platform based on the combined parameters of the reaction dynamic model for methanol dehydration reaction, the improved NRTL model of the liquid phase, the PR model of vapor phase. In order to validate the proposed model, the simulation results have been compared with the available data from a set of industrial production equipment with a production capacity of 200 000 tonnes per annum. A comparison between the calculated and measured results has proved that these results are satisfactory. The bed height and the volume of the catalytic bed are calculated aim at one million t/a DME yields and while taking account of high-purity DME production. After discussing the influence of feed stage location and reflux ratio for DME product purity, the suitable unit operation conditions are chosen. Accordingly, accurate process simulation results provide the basis and guidance for an improvement and development of the similar industrial device.
EN
A proper selection of steam reforming catalyst geometry has a direct effect on the efficiency and economy of hydrogen production from natural gas and is a very important technological and engineering issue in terms of process optimisation. This paper determines the influence of widely used seven-hole grain diameter (ranging from 11 to 21 mm), h/d (height/diameter) ratio of catalyst grain and Sh/St (hole surface/total cylinder surface in cross-section) ratio (ranging from 0.13 to 0.37) on the gas load of catalyst bed, gas flow resistance, maximum wall temperature and the risk of catalyst coking. Calculations were based on the one-dimensional pseudo-homogeneous model of a steam reforming tubular reactor, with catalyst parameters derived from our investigations. The process analysis shows that it is advantageous, along the whole reformer tube length, to apply catalyst forms of h/d = 1 ratio, relatively large dimensions, possibly high bed porosity and Sh/St ≈ 0.30-0.37 ratio. It enables a considerable process intensification and the processing of more natural gas at the same flow resistance, despite lower bed activity, without catalyst coking risk. Alternatively, plant pressure drop can be reduced maintaining the same gas load, which translates directly into diminishing the operating costs as a result of lowering power consumption for gas compression.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.