Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  principal components analysis
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
2
Content available remote

Chemometric study of soil analysis data

100%
EN
The present paper deals with chemometric interpretation of soil analysis data collected from 31 sampling sites in the region of Kavala and Drama, Northern Greece. The determination of 16 different chemical and physicochemical characteristics is principally needed for prognosis of the land treatment and fertilizing. The study carried out indicates that the application of multivariate statistical approaches could reveal new and specific information about sampling sites. It has been found that they could be divided into four general patterns: pattern 1 contains dominantly inorganic and alkaline soil samples from semi-mountainous regions in close proximity to the seacoast; pattern 2 indicates the same soil sample type and regional location as pattern 1 but is far from the coastal line; pattern 3 includes samples from sites from the plains with organic and alkaline soils with close proximity to the coast; pattern 4 resembles pattern 3 as soil type but involves samples from sites far from the shore. Further, six latent factors were identified, conditionally named “structural”, “acidic”, “nutritional”, “salt”, “microcomponents” and “organic”. Finally, an apportioning procedure was carried out to find the source contributions in the measured analytical values. In this way the routine estimation of the soil quality could be improved.
EN
The present paper deals with an estimation of the water quality of the Struma river. Long-term trends, seasonal patterns and data set structures are studied by the use of statistical analysis. Nineteen sampling sites along the main river stream and different tributaries were included in the study. The sites are part of the monitoring net of the region of interest. Seventeen chemical indicators of the surface water have been measured in the period 1989–1998 in monthly intervals. It is shown that the water quality is relatively stable throughout the monitoring period, which is indicated by a lack of statistically significant trends for many of the sites and by chemical variables. Several seasonal patterns are observed at the sampling sites and four latent factors are identified as responsible for the data set structure.
|
|
vol. 19
|
issue 2
213-226
EN
Two major environmetric methods (Cluster analysis (CA) and Principal components analysis (PCA)) were applied for statistical assessment of the water quality of trans-border river Tundja. The study used long-term monitoring data from 26 sampling sites characterized by 12 physicochemical parameters. Clustering of chemical indicators results in 3 major clusters: the first one shows the impact of anthropogenic sources, the second - the impact of agriculture and farming activities and the last one describes the role of the physical parameters on the water quality and also the impact of urban wastes. For better assessment of the monitoring data, PCA was implemented, which identified four latent factors. Two of them - "urban wastes" factor and "agriculture" factor correspond almost entirely to clusters 3 and 2 from the previous statistical analysis. The third one, named "industrial wastes" factor, reveals a specific seasonal behavior of the river system. The last latent factor describes the active reaction of the water body and is determined as "acidity" factor. The linkage of the sampling sites along the river flow by CA formed two clusters with the spatial "upstream-downstream" separation. The apportionment model of the pollution determined the contribution of each one of identified pollution factors to the total concentration of each one of the water quality parameters.
PL
Dwie główne metody analizy danych środowiskowych (analiza skupień (CA) i analiza składowych głównych (PCA)) zastosowano do statystycznej oceny jakości wód transgranicznej rzeki Tundja. W badaniach wykorzystano dane otrzymane z monitoringu długookresowego. Próbki pobrano w 26 miejscach i scharakteryzowano za pomocą 12 parametrów fizykochemicznych. Pogrupowanie tych parametrów ze względu na 3 wskaźniki chemiczne pozwoliło na zbudowanie 3 głównych klastrów: pierwszy z nich pokazuje wpływ źródeł antropogennych, drugi - wpływ rolnictwa i działalności rolniczej, a trzeci opisuje rolę parametrów fizycznych i zanieczyszczeń środowiska miejskiego na jakość wody. W celu lepszej oceny danych monitoringowych zastosowano PCA, co pozwoliło na identyfikację czterech ukrytych czynników. Dwa z nich - czynnik "miejskie odpady" i czynnik "rolnictwo" - odpowiadają niemal w całości klastrom 3 i 2 z poprzedniej analizy statystycznej. Trzeci czynnik, nazwany "odpadami przemysłowymi", ukazuje specyficzne zmiany sezonowe w systemie rzecznym. Ostatni czynnik opisuje reakcję wody i jest określany jako czynnik "kwasowość". Powiązania pomiędzy miejscami pobierania próbek wzdłuż przepływu oceniono za pomocą CA. Wskazano istnienie dwóch klastrów z separacją przestrzenną "upstream-downstream". Model podziału zanieczyszczeń określał wkład każdego ze zidentyfikowanych czynników zanieczyszczeń w całkowitym stężeniu każdego z parametrów jakościowych wody.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.