Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  power plant
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The aim of this work was the ToF-SIMS investigations of different particles arising as a result of a coal combustion process in selected power plants from Central Poland. The chemical composition and distribution of particular compounds on the studied surfaces were determined. Moreover, the ratio of the quantity of aromatic and aliphatic hydrocarbons adsorbed on the surface of the particles was estimated. A qualitative analysis of the studied samples demonstrated the presence of a big number of various compounds, including heavy metals such as Pb, Cd and As on the investigated surfaces. In the prevailing number sample components were distributed non-homogenously on the surface and the larger areas richer in a certain type of ions were observed.
2
Content available remote

Important problems of future thermonuclear reactors*

88%
Nukleonika
|
2015
|
vol. 60
|
issue 2
331-338
EN
This paper concerns important and difficult problems connected with a design and construction of thermonuclear reactors, which have to use nuclear fusion reactions of heavy isotopes of hydrogen, i.e., deuterium (D) and tritium (T). There are described conditions in which such reactions can occur, and different methods of a high-temperature plasma generation, i.e., high-current electrical discharges, intense microwave pulses, and injection of energetic neutral atoms (NBI). There are also presented experimental facilities which can contain hot plasma for an appropriate period, and particularly so-called tokamaks. The second part presents the technical problems which must be solved in order to build a thermonuclear reactor, that might be used for energetic purposes. There are considered problems connected with a choice of constructional materials for a vacuum chamber, its internal parts, external windings generating a magnetic field, and necessary shields. The next part considers the handling of radioactive tritium; the using of alpha particles (4He) for additional heating of plasma; recuperation of hydrogen isotopes absorbed in the tokamak internal parts, and a removal of a helium excess. There is presented a scheme of a future thermonuclear power plant and critical comments on a road map which should enable the construction of an industrial thermonuclear reactor (DEMO).
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.