Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  polystyrene
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Chemistry
|
2003
|
vol. 1
|
issue 1
69-90
EN
The first part of this approach is concerned with the elaboration of a radical polymerization model of styrenne, based on a kinetic diagram that includes chemical and thermal initiation, propagation, termination by recombination and chain transfer to the monomer. Furthermore, volume contraction during polymerization is considered, as well as the gel and glass effects. The mathematical formalism that describes the model in terms of moments is explored in detail. The model was then used to predict the changes in monomer conversion and molecular weight after intermediate addition of initiator and monomer. The results of this operation are dependent on the conditions of the reaction mass, quantity, and moment of substance addition. Therefore, the simulations were performed at different times with respect to the gel effect; before, during and after this phenomenon, and also with respect to different temperatures and initiators. Increasing the initiator concentration before the gel effect leads to an earlier appearance of the phenomenon and to a decrease in molecular weight. The ratio $$\bar M_w /\bar M_n $$ reveals a polydispersity index smaller for the intermediate addition of initiator. No significant changes take place during or after the gel effect. If along with the initiator, unreacted monomver (used to dissolve the initiator) enters the reactor, a small dip in conversion is observed. The general conclusion of this paper reveals the intermediate addition of initiator as a method to control polymer properties and to prevent the “dead-end” polymerization of styrene.
EN
To estimate the skin dose to the patient from the treatment planning, the knowledge about exit dose is essential, which is calculated from the percentage depth dose. In this study 6 MV and 18 MV beams from linear accelerator and cobalt-60 beams were used. The ionometric measurements were carried out with parallel plate chamber of sensitive volume 0.16 cc. Parallel plate chamber was fitted in to 30 x 30 cm2 polystyrene phantom at a fixed FSD with the measuring entrance window facing farther from the source. The field size for this measuring condition was maintained at 10 x 10 cm2. The ionization measurements were also carried out by changing the thickness of the polystyrene phantom at the entrance side of the point of measurement. In order to find out the variation of relative exit dose (RED) with field size the measurements were carried out without and with the full back-scattering material (27.2 gm/cm2) placed beyond the entrance window of the chamber. The measurements were also done for the entrance polystyrene phantom thicknesses of 10, 20 and 30 cm for the field size ranging from 5 x 5 cm2 to 30 x 30 cm2. The dose at the exit surface with no backscatter material is about 4.4%, 3.7% and 5.8% less than the dose with the full backscatter material present beyond the point of measurement for 6 MV, 18 MV X-rays and cobalt-60 gamma rays. The reduction in exit dose does not depend much of the phantom thickness through which the beam traverses before exiting at the chamber side. Dose enhancements of about 1.03 times were observed for a field size of 5 x 5 cm2 for 6 MV, 18 MV X-rays and cobalt-60 gamma rays. The dose enhancement factor (DEF) values were noticed to vary with field size beyond 15 x 15 cm2 for all the energies studied. Also it can be observed that the dose enhancement factor (DEF) values do not depend on the thickness of the phantom material through which the beam has traversed. The DEF values were found to vary marginally for different phantom material thickness for the particular field size. The study indicates that a reduction of 4.4% and 3.7% in relative exit dose when there is no backscatter material present for 6 and 18 MV X-rays for most of the clinically used radiotherapy portals. The measured exit dose was found to be mostly independent of field size and the thickness of the phantom material through which the beam gets transmitted at the entrance side. An addition of backscatter material of thickness equal to two-thirds of the dmax depth of the radiation beam concerned results in full dose at the exit side.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.