Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  polycyclic aromatic hydrocarbons
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Binding affinities of ten polycyclic aromatic hydrocarbons to albumin were determined: anthracene, its eight oxy-derivatives: anthraquinone, 9-anthracenemethanol, 9-anthraldehyde, 9-anthracenecarboxylic acid, 1,4-dihydroxyanthraquinone, 1,5-dihydroxyanthraquinone, 1,8-dihydroxyanthraquinone, 2,6-dihydroxyanthraquinone and benzo[a]pyrene. The quenching of albumin fluorescence was used to measure the PAH - protein interaction. The theoretical curve of calculated fluorescence was fitted to experimental data after necessary corrections regarding PAHs fluorescence and inner filter effect. From the numerical fitting the final association constants were calculated. Anthracene and anthraquinone failed to quench the albumin fluorescence. 9-anthracenecarboxylic acid showed the highest, while 9-anthracenemethanol the weakest albumin binding affinity. The affinity constants determined for 9-anthraldehyde and benzo[a]pyrene were of the same magnitude and indicated low-affinity binding to albumin. The constants obtained for the four dihydroxyanthraquinones were higher, but dissimilar, which suggests that the position of the functional group in anthracene molecule influences the binding constant. Moreover, this study suggests that the type of substituent plays a significant role in PAH-albumin complex formation. The carboxylic group increases the binding affinity of the anthracene molecule the most rather than the presence of both carbonyl and hydroxyl groups. The lowest affinity constants were obtained for aldehyde, methyl and carbonyl substituents.
EN
The main purpose of the study was to assess the occurrence of wheezing and lung function in non-smoking women exposed to various levels of fine particulate matter(FP) and polycyclic aromatic hydrocarbons (PAH). Out of the total study group, 152 women were included in the lower exposed group (PM2.5 ≤34.3μg/m3 or PAHs ≤ 22.9ng/ m3) and 96 persons in higher concentrations of both air pollutants (PM2.5>34.3μg/m3 and PAHs > 22.9ng/ m3). Except for FVC and FEV1, all lung forced ventilatory flows (PEFR, FEF25% FEF50%, FEF75%, FEF25−75%) were significantly lower in the higher exposed group. The findings suggest bronchoconstriction within the respiratory tract, which may be related to the exposure under study. This was consistent with a higher prevalence of wheezing in more exposed subjects. It was shown that higher levels of both pollutants increased the risk of wheezing by factor 5.6 (95% CI: 1.77–17.8) after accounting for potential confounders such as allergic diseases and exposure to ETS. This study suggests that pollutants in question may have the capacity to promote broncho-constriction and asthmatic symptoms, possibly by bronchial inflammation resulting from the exposure.
EN
The objective of this study was to find major PAHs produced in ambient air from the automobile exhaust as a function of fuels (diesel, petrol, and biodiesel) and engine type qualitatively and quantitatively. The recovery range was found between 30% and 70%. The study was carried out on two, three, and four wheelers. Biodiesel samples tested in the study were synthesized indigenously from different starting raw materials and analyzed for PAHs concentration in the exhaust on a Honda genset (EBK 2000AC Model). Biodiesel samples were blended with diesel in different ratio (25:75, 35:65 and 45:55) to investigate the exhaust behavior. Biodiesel was blended with Diesel the concentration of almost all PAHs reduces in comparison to pure Diesel exhaust. B(a)A and B(a) P was the common PAH found in higher concentration in almost all fuels. FTIR results indicate esterification of vegetable oil and NMR results indicate a complete conversion of oils into biodiesel.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.