Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 7

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  platinum
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
This review classifies and analyzes over fifty heterohepta- and heterooctanuclear platinum clusters. There are eight types of metal combinations in heteroheptanuclear: Pt6M, Pt5M2, Pt4M3, Pt3M4, Pt2M5, PtM6, Pt3Hg2Ru2 and Pt2Os3Fe2. The seven metal atoms are in a wide variety of arrangements, with the most common being one in which the central M atom (mostly M(I)) is sandwiched by two M3 triangles. Another arrangement often found is an octahedron of M6 atoms asymmetrically capped by an M atom. The shortest Pt-M bond distances (non-transition and transition) are 2.326(1) Å (M = Ga) and 2.537(6) Å (M = Fe). The shortest Pt-Pt bond distance is 2.576(2) Å. In heterooctanuclear platinum clusters there are eight types of metal combinations: Pt6M2, Pt4M4, Pt3Ru5, Pt2M6, PtM7, Pt2W4Ni2, PtAu6Hg and PtAu5Hg2. From a structural point of view, the clusters are complex with bicapped octahedrons of eight metal atoms prevailing. The shortest Pt-M bond distances (non-transition and transition) are 2.651(3) Å (M = Hg) and 2.624(1) Å (M = Os). The shortest Pt-Pt bond distance is 2.622(1) Å. These values are somewhat longer than those in the heteroheptanuclear clusters. Several relationships between the structural parameters were found, and are discussed and compared with the smaller heterometallic platinum clusters
EN
This review classifies and analyses fifty heteronona- and heterodecanuclear Pt clusters of metal composition: Pt4Ru5, Pt3Ru6, Pt20sr PtRh8, PtAu8; Pt6M4, Pt5M5, Pt4M6, Pt3M2, Pt2M8, PtM9, Pt3Ru6M and PtAu8M. There are nine different heterometals: M = Ru, Au, Ag, Cu, Hg, Os, Rh, Ir and Fe, of which Ru and Au are the most frequent. The clusters crystallize mostly into two crystal classes, monoclinic (74%) and triclinic (18%), and their structures are complex. Three triangular layers of nine metal atoms arranged in the form of a face-shared bioctahedron are common in the series of heterononanuclear clusters. In the series of heterodecanuclear clusters distorted skeletal icosahedrons, where a central platinum atom is surrounded by nine metal atoms, and face (edge) shared (fused) bioctahedral cluster of the metal atoms are the most common. The most frequent ligands are CO and PPh3. The shortest metal-metal bond distances are: 2.540(4) Å (Pt-Fe), 2.580(2) Å (Ru-Ru), 2.584 Å (Pt-Pt) and 2.629(4) Å (Cu-Au). Several relationships between the structural parameters were found and are discussed. Some clusters contain two crystallographically independent molecules within the same crystal and are examples of distortion isomerism.
EN
This review covers heteropolynuclear platinum complexes. There are over sixty examples with heterometal atoms as partners including non- transition metals, K, Cs, Mg, Ca, Sr, Tl, Sn, Pb, Zn, Cd, and transition metals: Cu, Ag, Fe, Co, Ni, Rh and Pd. In addition, there are examples for the lanthanides, Eu and Yb. The most common are Ag (x16) and K (x14). The predominant geometries for Pt(II) is square-planar and for Pt(IV) is octahedral. The overall structures are complex. In spite of the wide variety of heterometal atoms partners of platinum, there is “real” Pt-M bonds only with silver, ranging from 2.678 to 2.943(I) Å (ave 2.855 Å). The mean Pt-Pt bond distance is 2.869 Å.
EN
This review classifies and analyzes over thirty heterooligonuclear platinum clusters with a wide variety of metal frameworks, from twelve to forty-four. There are thirteen heterometals (Ge, Sn, Hg, W, Mo, Ru, Rh, Pd, Os, Ni, Cu, Ag, Au) which are the partners of platinum. The clusters mostly crystallize in monoclinic (36,4%) and triclinic (30,3%) crystal classes. Their structures are complex, with platinum most commonly preferring interstitial sites, such as the centroids of icosahedrons. There are examples of distortion isomerism. The most common ligands are CO and PPh3, and it is interesting that the mean Pt-CO and M-CO bond distances are identical at 1.84 Å. In contrast, the mean Pt-μCO and M-μCO are of values of 2.02 and 1.97 Å, respectively, while the Pt-PPh3 and M-PPh3 bond distances are 2.30 and 2.28 Å, respectively. The shortest Pt-Pt, Pt-M (non-transition) and Pt-M (transition) bond distances are 2.559(2) Å, 2.412(2) Å (M = Ge) and 2.510(2) Å (M = Ni).
7
Publication available in full text mode
Content available

Cisplatyna – lek z przypadku

58%
EN
The paper is an overview of metal-containing compounds, i.e. platinum derivatives, used to create extremely active oncologic drugs. Platinum derivatives are in use for about 40 years in the treatment of most (nearly 80%) malignant tumors. Among metal-containing drugs, platinum derivatives are longest in use; they are very active tumor-destroying agents, have a potent antitumor effect and are the basis of several multidrug protocols. Unfortunately, apart of their antitumor effect, cisplatin has also considerable toxicity manifesting in many organ systems. Second- and third-generation platinum derivatives are being developed, aiming at reduction of these unfavorable effects while preserving or even enhancing its antitumor activity. In order to reduce platinum-related toxicity, such modalities as cytoprotection, pharmacogenetics and molecular biology are resorted to, aiming at isolation of active genes participating in the development of drug resistance. The aim of cytoprotection is to protect and strengthen normal tissues against deleterious impact of chemotherapy by rapid regeneration of healthy tissue, with no reduction of activity of cytostatic drugs. Pharmacogenetics aims at discovery of genes, their interactions and responses to particular cytostatic agents used in oncology. The goal is to point-out patients most at risk of developing unacceptable toxicity, even before application of the drug. History of use of cisplatin in the treatment of tumors indicates that improvement of treatment outcomes is the sum-total of inputs of interdisciplinary teams: chemists, biologists and oncologists.
PL
W artykule przedstawiono pochodne metali – związki platyny, które posłużyły do stworzenia niezwykle aktywnych leków onkologicznych. Leki z grupy platynowców stosowane są od 40 lat w leczeniu około 80% nowotworów złośliwych. Spośród leków zwanych metalowcami związki platyny wykorzystuje się najdłużej. Są one niezwykle aktywne w procesie niszczenia nowotworów, wykazują najsilniejsze działanie przeciwnowotworowe i są stosowane w wielu programach wielolekowych. Niestety, oprócz dużej aktywności onkologicznej cisplatyna przejawia także bardzo silne własności toksyczne w stosunku do wielu narządów. Powstające kolejne, drugie i trzecie generacje leków – pochodnych platyny – mają zmniejszyć właśnie te niekorzystne efekty przy zachowaniu aktywności, a może nawet ją zwiększać. W celu ograniczenia toksyczności wykorzystuje się także cytoprotekcję, farmakogenetykę i biologię molekularną, dążąc do wyodrębnienia aktywnych genów uczestniczących w procesie lekooporności. Celem cytoprotekcji jest ochrona i wzmocnienie zdrowych tkanek przed negatywnym działaniem chemioterapii poprzez szybką odnowę zdrowych tkanek bez zmniejszenia aktywności leków cytostatycznych. Farmakogenetyka ma na celu poznanie genów i ich wzajemnych powiązań oraz oddziaływań na stosowane leki cytostatyczne wykorzystywane w onkologii. Służy wyselekcjonowaniu chorych, u których mogą wystąpić silne efekty toksyczne wskutek stosowania określonych leków, jeszcze przed ich zastosowaniem. Historia stosowania cisplatyny w leczeniu nowotworów pokazuje, że poprawa wyników leczenia onkologicznego jest sumą działania zespołów interdyscyplinarnych: chemików, biologów i onkologów.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.