Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  phytotoxicity
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Effect of aluminium on plant growth and metabolism.

100%
EN
Aluminium toxicity is one of the major factors that limit plant growth and development in many acid soils. Root cells plasma membrane, particularly of the root apex, seems to be a major target of Al toxicity. However, strong interaction of Al3+, the main Al toxic form, with oxygen donor ligands (proteins, nucleic acids, polysaccharides) results in the inhibition of cell division, cell extension, and transport. Although the identification of Al tolerance genes is under way, the mechanism of their expression remains obscure.Soil chemical factors that limit root growth in acid soils, diminish crop production, include Al, Mn and various cations, and also deficiency or unavailability of Ca, Mg, P, Mo, and Si. These effects are further complicated by interactions of Al with other ions in different plant genotypes and under stress conditions (Foy, 1992). Cytotoxicity of Al has been well documented in plants (Delhaize & Ryan, 1995; Horst et al., 1999; Kollmeier et al., 2000; Marienfeld et al., 2000). It is generally known that plants grown in acid soils due to Al solubility at low pH have reduced root systems and exhibit a variety of nutrient-deficiency symptoms, with a consequent decrease in yield. In many countries with naturally acid soils, which constitute about 40% of world arable soil (LeNoble et al., 1996), Al toxicity is a major agricultural problem, and is intensively studied in plant systems.The effects of aluminium on plant growth, crop yield, uptake and nutrients distribution in vegetative and reproductive parts are still not fully understood. This review discusses recent information on aluminium toxicity with an emphasis on plant response to Al stress.
4
72%
EN
Ionic liquids have attracted considerable interest in various areas as new, non-volatile and non-flammable organic solvents, catalysts, reaction additives, ligands, drugs and other dedicated materials etc. Their general use, sometimes in bulky quantities, requires determination of their potential ecotoxicity on selected organisms. In the present work, influence of triphenylmethylphosphonium iodide (1) and triphenylhexadecylphosphonium iodide (2), introduced to soil, on germination and early stages of growth and development of superior plants was investigated using the plant growth test based on the OECD/OCDE 208/2006. In this test, the seeds of selected species, i.e. land superior plants - spring barley (Hordeum vulgare) and common radish (Raphanus sativus L. subvar. radicula Pers.) were planted in pots containing soil to which a test chemical compound had been added and in pots with control soil. To evaluate the phytotoxicity of ionic liquids 1 and 2 germination and weight (dry and fresh) of control plant seedlings were determined and compared with the germination and weight (dry and fresh) of the seedlings of plants grown in the soil watered with appropriate amounts of the test chemicals. The visual assessment of any types of damage to the test species, such as growth inhibition, chlorosis and necrosis, was also carried out and documented by digital photographs. Based on the obtained results, magnitudes of the LOEC - the lowest concentration causing observable effects in the form of reduction in growth and germination compared with the control and the NOEC - the highest concentration not causing observable, toxic effects - were also determined.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.