Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  perovskites
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
A composite of CaTi0.9Fe0.1O3 and electrolyte material, i.e. magnesium doped La0.98Mg0.02NbO4 was prepared and studied. The phase content and the sample microstructure was examined by an X-ray diffraction method and scanning electron microscopy. EDS measurements were done both for composite samples and the diffusion couple. The electrical properties were studied by four terminal DC method. The high-temperature interaction between the two components of the composite has been observed. It has been suggested that lanthanum diffused into the perovskite phase and substituted for calcium whereas calcium and niobium formed the Ca2Nb2O7 pyrochlore phase. At 1500°C very large crystallites of the pyrochlore were observed. Regardless of strong interaction between the composite components, its total conductivity was weakly dependent on the sintering temperature.
EN
The perovskite type oxides (nominal formula LaTi0.5Mg0.5O3) with addition of Pd were prepared by annealing the ethanol solution of precursors in nitrogen flow at 1200°C and characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption of NO (NO-TPD). Their activity was evaluated for NO reduction by CO under stoichiometric and oxidizing conditions and for direct decomposition of NO. Pd substituted samples exhibited high NO reduction activity and selectivity towards N2. Nearly complete elimination of NO was achieved at 200°C. Two simultaneous reactions, NO reduction by CO and direct decomposition of NO as well as two forms of NO adsorption were observed on the surface of Pd substituted perovskite samples. The distribution of Pd in different catalytically active sites or complexes on at the catalyst surface may be responsible for the proceeding of two reactions: NO reduction with CO and direct NO decomposition. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.