Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  papain
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Papain activity in a buffer containing Me2SO was studied using fluorogenic substrates. It was found that the number of active sites of papain decreases with increasing Me2SO concentration whereas the incubation time, in a buffer containing 3% Me2SO does not affect the number of active sites. However, an increase of papain incubation time in the buffer with 3% Me2SO decreased the initial rate of hydrolysis of Z-Phe-Arg-Amc as well as Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans. Moreover, an increase of Me2SO concentration in working buffer decreased the initial rate of papain-catalysed hydrolysis of both substrates. A rapid decrease of the initial rate (by up to 30%) was observed between 1 and 2% Me2SO. Application of the Michaelis-Menten equation revealed that at the higher Me2SO concentrations the apparent values of kcat/Km decreased as a result of Km increase and kcat decrease. However, Me2SO changed the substrate binding process more effectively (Km) than the rate of catalysis kcat..
2
Content available remote

Influence of organic solvents on papain kinetics

100%
EN
Papain activity was studied in water-organic solvent mixtures using the fluorogenic substrate Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans. The increase of organic solvent (MeOH, EtOH, iPrOH, TFE, MeCN, (MeO)2Et and DMF) concentration in the mixture caused a substantial decrease the initial rate of papain-catalyzed hydrolysis. Moreover, the number of papain active sites decreased with the increase of DMF and MeOH concentration.
EN
Physiological and pathological roles of cysteine proteases make them important targets for inhibitor development. Although highly potent inhibitors of this group of enzymes are known, their major drawback is a lack of sufficient specificity. Two cysteine protease covalent inhibitors, viz. (i) Z-RL-deoxo-V-peptide-epoxysuccinyl hybrid, and (ii) Z-RLVG-methyl-, have been developed and modeled in the catalytic pocket of papain, an archetypal thiol protease. A number of configurations have been generated and relaxed for each system using the AMBER force field. The catalytic pockets S3 and S4 appear rather elusive in view of the observed inhibitors' flexibility. This suggest rather limited chances for the development of selective structure-based inhibitors of thiol proteases, designed to exploit differences in the structure of catalytic pockets of various members of this family.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.