Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  nonlinear differential equation
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The solutions of the reaction-diffusion system are given by method of collocation based on the exponential B-splines. Thus the reaction-diffusion systemturns into an iterative banded algebraic matrix equation. Solution of the matrix equation is carried out byway of Thomas algorithm. The present methods test on both linear and nonlinear problems. The results are documented to compare with some earlier studies by use of L∞ and relative error norm for problems respectively.
EN
In this manuscript, a reliable scheme based on a general functional transformation is applied to construct the exact travelling wave solution for nonlinear differential equations. Our methodology is investigated by means of the modified homotopy analysis method which contains two convergence-control parameters. The obtained results reveal that the proposed approach is a very effective. Several illustrative examples are investigated in detail.
3
86%
Open Physics
|
2014
|
vol. 12
|
issue 7
503-510
EN
The purpose of this paper is to show how to use the Optimal Homotopy Asymptotic Method (OHAM) to solve the nonlinear differential Thomas-Fermi equation. Our procedure does not depend upon small parameters and provides us with a convenient way to optimally control the convergence of the approximate solutions. An excellent agreement was found between our approximate results and numerical solutions, which prove that OHAM is very efficient in practice, ensuring a very rapid convergence after only one iteration.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.