Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  muscle imbalance
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The purpose of the study was to evaluate marked postural asymmetry and gross joint mobility in elite female volleyball athletes.Sixty-two Czech and Slovak elite female volleyball athletes (age 20.7±2.03 years, body mass 71.1±6.18 kg, body height 1.804±.0618 m, BMI 21.8±1.78) were examined by an experienced rehabilitation physician. The set of tests included the frontal posture gross examination, the forward bending test from the standing position and the deep squat test. The spiking hand and the presence of any lower extremity injury were estimated by interview. The proportion test, Mann-Whitney test and t-test were used to evaluate statistical significance (p<0.05).Fifty subjects (80.6%) exhibited "typical" frontal plane posture in which the acromion, scapula and the iliac crest were in a higher position on the left side than on the right, significantly more frequently than all the other patterns (proportion test, p<0.0001). Ninety-eight percent of the subjects with the "LLL pattern" preferred the right arm for spiking (proportion test, p<0.0001). Forty-one subjects (66%) exhibited hypermobility in the forward bending test, significantly more frequently than twenty-one subjects (34%) with normal results (proportion test, p=0.0003). Thirty-four subjects (55%) did not succeed in the deep squat test and hypermobility in the forward bending test paradoxically prevailed in them significantly (proportion test, p=0.004). Restriction in the deep squat test was not linked to obesity, age (t-test, p=0.081) nor knee (proportion test, p=0.85) and ankle injury (Mann-Whitney test, p=0.36) in the past. Significant prevalence of hypermobility in the forward bending test was not surprising because of general body composition and the performance of regular stretching exercises in elite female volleyball athletes. On the other hand, surprisingly, more than half of the subjects did not succeed in the deep squat test. The cause of poor results in the deep squat test could be due to the tightness of the soleus muscle suffering from chronic overloading and/or an inappropriate stretching methods. An inappropriate and/or insufficient compensatory exercise and stretching method or system could be the cause of their marked postural asymmetry as well.A detailed examination of posture and muscle imbalance performed by an experienced physician or physiotherapist as well as individually tailored compensatory exercises and a stretching system can be strongly recommended to all elite athletes, not only to volleyball players.
EN
The aim of this study was to investigate the effects of two training protocols on the isokinetic performance of athletes. The study was conducted in 38 athletes, (age 23.3 ± 3.6 years) participating in national level leagues of different sports, whose initial concentric hamstrings-to-quadriceps (conH/Q) torque ratio was lower than 0.5. During seasonal testing, an isokinetic measurement of knee extensors and flexors was performed at 60º/s. The athletes were divided into two groups. Nineteen athletes performed the isokinetic training protocol (IT) while the second group of 19 athletes followed the isotonic training protocol (RT). Both protocols lasted 4 weeks. After completing the training protocols, both groups underwent a final isokinetic testing. The isokinetic data revealed significant increases after training in measures of peak torque in both extensor and flexor muscle groups, in both the IT and RT study groups (p < 0.05). There were significant increases (p< 0.05) in conH/Q ratio in both groups after the implemented protocols, but greater in IT group. Consequently, applied IT protocol induced changes in working muscles, thereby restoring detected asymmetry to an acceptable balance more efficiently compared to RT protocol.
EN
One of the key components in sports injury prevention is the identification of imbalances in leg muscle strength. However, different leg muscle characteristics may occur in large playing area (field) sports and small playing area (court) sports, which should be considered in regular injury prevention assessment. This study examined the isokinetic hamstrings-to-quadriceps (H:Q) ratio and bilateral leg strength balance in 40 male college (age: 23.4 ± 2.5 yrs) team sport players (field sport = 23, soccer players; court sport = 17, volleyball and basketball players). Five repetitions of maximal knee concentric flexion and concentric extension were performed on an isokinetic dynamometer at two speeds (slow: 60 °·s-1 and fast: 300°·s-1) with 3 minutes rest between tests. Both legs were measured in counterbalanced order with the dominant leg being determined as the leg used to kick a ball. The highest concentric peak torque values (Nm) of the hamstrings and quadriceps of each leg were analyzed after body mass normalization (Nm·kg-1). Court sport players showed significantly weaker dominant leg hamstrings muscles at both contraction speeds (P < 0.05). The H:Q ratio was significantly larger in field players in their dominant leg at 60°·s-1 (P < 0.001), and their non-dominant leg at 300°·s-1 (P < 0.001) respectively. Sport-specific leg muscle strength was evident in college players from field and court sports. These results suggest the need for different muscle strength training and rehabilitation protocols for college players according to the musculature requirements in their respective sports.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.