Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  molecular switches
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The six lowest lying electronic singlet states of 8-(pyrimidine-2-yl)quinolin-ol and 2-(4-nitropyrimidine-2-yl)ethenol have been studied theoretically using the complete active space self-consistent-field (CASSCF) and M’ller-Plesset second-order perturbation theory (MP2) methods. Both molecules can be viewed as consisting of a frame and a crane component. As a possible mechanism for the excited-state relaxation process an intramolecular hydrogen transfer promoted by twisting around the covalent bond connecting the molecular frame and crane moieties has been considered. Based on this idea we have attempted to derive abstracted photochemical pathways for both systems. Geometry optimizations for the construction of hypothetical reaction coordinates have been performed at the MP2 level of theory while the CASSCF approach has been employed for the calculation of vertical excitation energies along the pathways. The results of the calculations along the specific twisting displacements investigated in this study do not support the notion of substantial twisting activity upon excitation of any of the five excited states at the planar terminal structures of the torsion coordinates of both molecules. However, the present analysis should be considered only as a first, preliminary step towards an understanding of the photochemistry of the two candidate compounds. For example, we have not performed any excited state geometry optimizations so far and the estimates of vertical excitation energies do not take dynamical electron correlation into account. Further work on this subject is in progress.
|
|
vol. 3
|
issue 1
EN
In the present review we highlight the main research activities in the field of organic photonics and photovoltaics at the Institute for Problems of Chemical Physics of Russian Academy of Sciences (IPCP RAS). Extensive investigation of optical and electrical properties of π-conjugated organic compounds performed at IPCP RAS since 1960’s resulted in design of many exciting materials representing organic semiconductors, metals and superconductors. Organic Schottky barrier and p/n junction photovoltaic devices constructed at IPCP RAS in 1960’s and 1970’s were among the first examples of reasonably efficient organic solar cells at that time. These early discoveries inspired younger generations of the researchers to continue the work of their mentors and explore the world of organic materials and photonic devices such as molecular photonic switches, organic light emitting diodes, solar cells, photodetectors, photoswitchable organic field-effect transistors and memory elements.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.