Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  molecular markers
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Biotechnology of temperate fruit trees and grapevines

100%
EN
Challenges concerning fruit trees and grapevines as long lived woody perennial crops require adapted biotechnological approaches, if solutions are to be found within a reasonable time frame. These challenges are represented by the need for correct identification of genetic resources, with the foreseen use either in conservation or in breeding programmes. Molecular markers provide most accurate information and will be the major solution for questions about plant breeders rights. Providing healthy planting material and rapid detection of newly introduced pathogens by reliable methods involving serological and molecular biological tools will be a future challenge of increases importance, given the fact that plant material travels freely in the entire European Union. But also new breeding goals and transgenic solutions are part of the biotechnological benefits, e.g. resistance against biotic and abiotic stress factors, modified growth habits, modified nutritional properties and altered processing and storage qualities. The successful characterization of transgenic grapevines and stone fruit trees carrying genes of viral origin in different vectors constructed under ecological consideration, will be presented. Beyond technical feasibility, efficiency of resistance, environmental safety and Intellectual Property Rights, also public acceptance needs consideration and has been addressed in a specific project. The molecular determination of internal quality parameters of food can also be addressed by the use of biotechnological tools. Patient independent detection tools for apple allergens have been developed and should allow to compare fruits from different production systems, sites, and genotypes for their content of health threatening compounds.
EN
The aim of this study was to use a two-marker assay for the detection of breast cancer cells circulating in patients' blood. We have applied a PCR-based methodology to follow up the possibility of the development of metastatic disease in stage I and II patients who had undergone curative surgery. Since the number of circulating cancer cells in peripheral blood is very low, the technique for their detection needs to be not only highly sensitive, but also very specific. The reverse transcriptase-polymerase chain reaction (RT-PCR) technique may improve the sensitivity of breast cancer cell detection up to only a few cells per one million. The principle of the RT-PCR assay is to amplify a messenger RNA characteristic for breast epithelial cells in a blood sample. Since we do not expect such cells to be circulating in peripheral blood of healthy subjects, detection of the characteristic mRNA should indicate the presence of circulating breast cancer cells. We analyzed the usefulness of three mRNA markers: cytokeratin 19 (CK19), mammaglobin (hMAM) and β subunit of human chorionic gonadotropin (β-hCG) for this test. Blood samples (112) were obtained from 55 patients, in stages I and II, with or without metastasis to regional lymph nodes (N0 or N1). We found that a two-marker assay increases the sensitivity of detection of breast cancer cells in comparison with a single-marker one. Combination of two tumor-specific mRNA markers, hMAM/CK19 or β-hCG/CK19, allowed the detection of circulating breast cancer cells in 65% of N1 patients and 38% of N0 patients. By comparison, the combination hMAM/β-hCG allowed the detection of circulating breast cancer cells in the blood of 68% of N1 patients and 46% of N0 patients. Addition of the third marker did not significantly increase the detection sensitivity.
EN
Sequence tagged site (STS) markers are valuable tools for genetic and physical mapping that can be successfully used in comparative analyses among related species. Current challenges for molecular markers genotyping in plants include the lack of fast, sensitive and inexpensive methods suitable for sequence variant detection. In contrast, high resolution melting (HRM) is a simple and high-throughput assay, which has been widely applied in sequence polymorphism identification as well as in the studies of genetic variability and genotyping. The present study is the first attempt to use the HRM analysis to genotype STS markers in narrow-leafed lupin (Lupinus angustifolius L.). The sensitivity and utility of this method was confirmed by the sequence polymorphism detection based on melting curve profiles in the parental genotypes and progeny of the narrow-leafed lupin mapping population. Application of different approaches, including amplicon size and a simulated heterozygote analysis, has allowed for successful genetic mapping of 16 new STS markers in the narrow-leafed lupin genome.
Kosmos
|
2017
|
vol. 66
|
issue 2
193-206
PL
Mikroorganizmy glebowe, pod względem cech genomowych i fenotypowych, stanowią wysoce zróżnicowaną grupę organizmów żywych. Z powodu tak dużej różnorodności ważne jest dobranie odpowiednich metod, dających największy stopień różnicowania mikroorganizmów. Narzędziami umożliwiającym analizę zmienności genetycznej mikroorganizmów są techniki genetyczne, a wśród nich jedną z najważniejszych jest łańcuchowa reakcja polimerazy, czyli PCR (Polymerase Chain Reaction), technika opracowana w latach 1980. Niniejsza praca stanowi przegląd podstawowych zagadnień dotyczących badania zmienności genetycznej mikroorganizmów glebowych w oparciu o markery molekularne z wykorzystaniem technik bazujących na reakcji PCR tj. PCR-RFLP, TRFLP, ARDRA, RAPD.
EN
Soil microorganisms represent a highly diverse group of living organisms in terms of genomic and phenotypic characteristics. Due to such a large diversity, it is important to select appropriate identification methods which would secure its most complete determination. Genetic techniques are proper tools of choice for analyzing genetic variability of microorganism, the most important of which is the polymerase chain reaction (PCR), developed in the 1980s. This work presents an overview of the basic issues concerning studies on genetic variability of soil microorganisms with help of molecular markers and application of PCR techniques such as PCR-RFLP, TRFLP, ARDRA, RAPD.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.