Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 4

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  metamaterial
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
Open Physics
|
2010
|
vol. 8
|
issue 3
415-421
EN
We have theoretically and numerically investigated the Goos-Hänchen shift (the lateral shift) from the anisotropic metamaterial slab. The sign and degree of the shift can be determined by the choices of the electromagnetic parameters and thicknesses of slab, which is different from the case of the isotropic media. We also find that the weak lossy may produce large positive or negative lateral shift.
Open Physics
|
2014
|
vol. 12
|
issue 2
141-146
EN
A mixed-structure form of one-dimensional metamaterial structure composed of single negative permittivity material and anisotropic metamaterial has been investigated in this paper. Such a multi-layer metamaterial structure constitutes special resonant structures, which can be used to control wave propagation and realize the complete separation of TM and TE wave by choosing specific parameters. Theoretical analysis and numerical calculations have been performed to confirm the above results. Specifically, augments in incident angles of TM and TE waves make complete transmission frequencies right shift, and the thicknesses of this resonant structure determine propagation modes and propagation frequencies.
EN
This paper presents a negative refractive index tunable metamaterial based on F-Shape structure which is capable of achieving dual-band negative permeability and permittivity, thus dual-band negative refractive index. An electromagnetic simulation was performed and effective media parameters were retrieved. Numerical investigations show clear existence of two frequency bands in which permeability and permittivity both are negative. The two negative refractive index bandwidths are from 23.8 GHz to 24.1 GHz and from 28.3 GHz to 34.9 GHz, respectively. The geometry of the structure is simple so it can easily be fabricated. The proposed structure can be used in multiband and broad band devices, as the band range in second negative refractive index region is 7 GHz, for potential applications instead of using complex geometric structures and easily tuned by varying the separation between the horizontal wires.
Open Physics
|
2009
|
vol. 7
|
issue 4
829-853
EN
Electromagnetic scattering from an infinite and a finite length PEMC circular cylinder, illuminated by an arbitrarily oriented dipole, is investigated theoretically. An electric dipole as a source of excitation is considered first, and then a magnetic dipole as a source of excitation is treated. In contrast to the case of an axially directed dipole, it is shown that no additional terms are needed to incorporate the cross-polarized component of the field for the case of radial and circumferential dipoles. Numerical verifications are presented to verify the validity of derived results and numerical code by comparing results with the published literature.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.