Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 6

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  membrane processes
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
HY2SEPS was an EU-funded project directed at the reduction of CO2 emissions. The principal objective of the project was to develop a hybrid membrane-adsorptive H2/CO2 separation technique that would form an integral element of the pre-combustion process. Specific tasks included the derivation of simplified mathematical models for the membrane separation of H2/CO2 mixtures.In the present study one of the developed models is discussed in detail, namely that with the countercurrent plug flow of the feed and the permeate. A number of simulations were carried out concerning the separation of binary mixtures that may appear following steam conversion of methane. The numerical results were then compared with the experimental data obtained by FORTH/ICEHT. The estimated fluxes of pure CO2, H2, CH4 and N2 are shown alongside those measured experimentally as a function of temperature and CO2 partial pressure in Figs 2 - 7. It is concluded that, in general, CO2 flux increases monotonically with both temperature and CO2 partial pressure. It is also found that the fluxes of hydrogen, methane and nitrogen reach a minimum at a temperature slightly above 323 K. Overall, a good agreement was obtained between the simulations and experiments.
EN
The mathematical model of postproduction suspension concentration by microfiltration has been developed. This model describes a process conducted in a batch system with membrane washing by reverse flow of permeate. The model considerations concern filtration pseudocycles consisting of the filtration period and the membrane washing period. The balances of continuous phase volume, dispersed phase mass and energy, for each period of pseudocycle respectively, have been presented.
EN
The removal of azo dye Acid Red 18 in hybrid photocatalysis/membrane processes systems was investigated. The photocatalytic reactions were conducted in the reactor with photocatalyst suspended in the solution. The reaction solution was recirculated through the ultrafiltration system. A commercially available titanium dioxide (Aeroxide® P25, Degussa, Germany) was used as a photocatalyst. The solution after the photocatalytic/UF reaction was applied as the feed for the membrane distillation process. The changes of various parameters, including the concentration of the dye, pH and the conductivity of the solution, TOC and TDS content were analyzed during the process.It was found that azo dye Acid Red 18 could be successfully decolourised in the hybrid photocatalysis/UF system. The catalyst particles were retained in the feed solution by means of the ultrafiltration membrane so the obtained permeate was free of TiO2. The application of ultrafiltration together with the photocatalytic process results in the separation of photocatalyst from the treated solution but does not give the complete removal of organic matter from the reaction mixture. Membrane distillation applied with the permeate after the photocatalysis/UF process as a feed gives a complete separation of TOC from the treated solution and the obtained product is practically pure water.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.