Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Journals help
Years help
Authors help
Preferences help
enabled [disable] Abstract
Number of results

Results found: 28

Number of results on page
first rewind previous Page / 2 next fast forward last

Search results

Search:
in the keywords:  machine learning
help Sort By:

help Limit search:
first rewind previous Page / 2 next fast forward last
EN
Spamming is the act of abusing an electronic messaging system by sending unsolicited bulk messages. Filtering of these messages is merely another line of defence and does not prevent spam messages from circulating in email systems. This problem causes users to distrust email systems, suspect even legitimate emails and leads to substantial investment in technologies to counter the spam problem. Spammers threaten users by abusing the lack of accountability and verification features of communicating entities. To contribute to the fight against spamming, a cloud-based system that analyses the email server logs and uses predictive analytics with machine learning to build trust identities that model the email messaging behavior of spamming and legitimate servers has been designed. The system constructs trust models for servers, updating them regularly to tune the models. This study proposed that this approach will not only minimize the circulation of spam in email messaging systems, but will also be a novel step in the direction of trust identities and accountability in email infrastructure.
EN
INTRODUCTION: To determine whether artificial intelligence (AI) interventions have the potential to mitigate racial and socioeconomic disparities in out-of-hospital cardiac arrests (OHCA).OHCA remains a leading cause of mortality globally, with survival rates significantly influenced by systemic healthcare inequalities. Research has identified significant disparities in OHCAs, ethnic minorities have double the risk of OHCA mortality in comparison to Caucasians, and this data has not changed in over 30 years. The AI revolution has captivated physicians with its ability to improve outcomes. The question now pivots to whether it can ameliorate disparities which have been ever present in medical history. This study aims to explore the role of AI in identifying these disparities in the context of OHCA focused on potential benefits and limitations of AI when applied. MATERIALS AND METHODS: A systematic search was conducted in CINAHL and Medline databases, restricted to studies published in the last five years. The search found 164 papers, narrowed to 20 after applying inclusion and exclusion criteria. Seven studies were identified as relevant to the question, focused on AI’s role in addressing disparities in OHCA outcomes. RESULTS: Two overarching themes were identified to encapsulate current research that can be utilised to promote awareness and mitigate ensuring disparities in OHCAs: racial and socioeconomic disparities identified by AI, and implications of AI interventions in OHCA. AI demonstrates the capacity to identify disparities through geographic and demographic predictors but is limited in its ability due to gaps in implementation and ethical programming practices. CONCLUSIONS: The intersectionality of high-risk socioeconomic status and ethnic group minorities in OHCA prevalence is evident, where low-income black sociodemographic contend with incomparable vulnerability. AI presents many opportunities for emergency medicine. However, at present AI should not be implemented as it would only widen disparities and not mitigate due to a lack of relational ethics in the programming process and evolving AI research failing to acknowledge race and socioeconomic characteristics as influential variables on OHCA outcomes.
PL
WSTĘP: Aby określić, czy interwencje sztucznej inteligencji (AI) mają potencjał łagodzenia różnic rasowych i społeczno-ekonomicznych w przypadku pozaszpitalnych zatrzymań krążenia (OHCA). OHCA pozostaje główną przyczyną śmiertelności na świecie, a wskaźniki przeżywalności są w znacznym stopniu uzależnione od systemowych nierówności w opiece zdrowotnej. Badania wykazały znaczne różnice w przypadku OHCA, mniejszości etniczne mają dwukrotnie większe ryzyko śmiertelności z powodu OHCA w porównaniu do rasy białej, a dane te nie zmieniły się od ponad 30 lat. Rewolucja AI zafascynowała lekarzy swoją zdolnością do poprawy wyników. Pytanie teraz dotyczy tego, czy może ona złagodzić różnice, które zawsze były obecne w historii medycyny. Niniejsze badanie ma na celu zbadanie roli AI w identyfikowaniu tych różnic w kontekście OHCA, skupiając się na potencjalnych korzyściach i ograniczeniach AI w przypadku zastosowania. MATERIAŁY I METODY: Przeprowadzono systematyczne przeszukanie baz danych CINAHL i Medline, ograniczone do badań opublikowanych w ciągu ostatnich pięciu lat. Przeszukanie wykazało 164 prace, zawężając je do 20 po zastosowaniu kryteriów włączenia i wykluczenia. Siedem badań zostało zidentyfikowanych jako istotne dla pytania, skupiających się na roli AI w rozwiązywaniu dysproporcji w wynikach OHCA. WYNIKI: Zidentyfikowano dwa nadrzędne tematy, aby ująć bieżące badania, które można wykorzystać do promowania świadomości i łagodzenia zapewniających dysproporcje w OHCA: dysproporcje rasowe i społeczno-ekonomiczne zidentyfikowane przez AI oraz implikacje interwencji AI w OHCA. AI wykazuje zdolność do identyfikowania dysproporcji za pomocą predyktorów geograficznych i demograficznych, ale jest ograniczona w swoich możliwościach ze względu na luki w implementacji i etycznych praktykach programowania. WNIOSKI: Interseksualność wysokiego ryzyka statusu społeczno-ekonomicznego i mniejszości etnicznych w rozpowszechnieniu OHCA jest oczywista, podczas gdy czarnoskórzy o niskich dochodach zmagają się z nieporównywalną podatnością. AI stwarza wiele możliwości dla medycyny ratunkowej. Jednakże obecnie nie należy wdrażać sztucznej inteligencji, ponieważ pogłębiłoby to tylko dysproporcje, a nie zmniejszyło ich ze względu na brak etyki relacyjnej w procesie programowania oraz fakt, że w prowadzonych badaniach nad sztuczną inteligencją nie bierze się pod uwagę rasy i cech społeczno-ekonomicznych jako zmiennych wpływających na wyniki OHCA.
Open Physics
|
2011
|
vol. 9
|
issue 3
874-883
EN
The aim of the present work is to use one of the machine learning techniques named the genetic programming (GP) to model the p-p interactions through discovering functions. In our study, GP is used to simulate and predict the multiplicity distribution of charged pions (P(n ch)), the average multiplicity (〈n ch〉) and the total cross section (σ tot) at different values of high energies. We have obtained the multiplicity distribution as a function of the center of mass energy ($$ \sqrt s $$) and charged particles (n ch). Also, both the average multiplicity and the total cross section are obtained as a function of $$ \sqrt s $$. Our discovered functions produced by GP technique show a good match to the experimental data. The performance of the GP models was also tested at non-trained data and was found to be in good agreement with the experimental data.
PL
As interest in AI in medicine grows, so too does the need for education on the topic. Despite the technology itself being so close, our understanding of the essence of how it works remains remote. A greater, more judicious acceptance of AI tools can be fostered in medicine by a broader appreciation of what the technology can and cannot do.
EN
Introduction This review aims to present briefly the new horizon opened to pharmacology by the deep learning (DL) technology, but also to underline the most important threats and limitations of this method. Material and Methods We searched multiple databases for articles published before May 2021 according to the preferred reported item related to deep learning and drug research. Out of the 267 articles retrieved, we included 50 in the final review. Results DL and other different types of artificial intelligence have recently entered all spheres of science, taking an increasingly central position in the decision-making processes, also in pharmacology. Hence, there is a need for better understanding of these technologies. The basic differences between AI (artificial intelligence), DL and ML (machine learning) are explained. Additionally, the authors try to highlight the role of deep learning methods in drug research and development as well as in improving the safety of pharmacotherapy. Finally, future directions of DL in pharmacology were outlined as well as possible misuses of it. Conclusions DL is a promising and powerful tool for comprehensive analysis of big data related to all fields of pharmacology, however it has to be used carefully.
first rewind previous Page / 2 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.