Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  lipid
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Background: There is little information regarding the effects of concurrent training (endurance and resistance training) on the fat profile, blood testosterone and cortisol response. The aim of the study was to investigate the effect of eight weeks of concurrent training on the fat profile, blood testosterone and cortisol response in young male wrestlers. Material/Methods: Twenty-four young male wrestlers voluntarily participated and were randomly assigned to three groups, namely: endurance training (ET, N=8), strength training (ST, N=8) and concurrent training (CT, N=8). The groups did their training programs three sessions per week. Results: The findings of this study showed that high-density lipoprotein cholesterol (HDL-C) decreased by 33.54% in the strength group (P=0.02). Total Testosterone (TT) experienced a decrease by 30.68% in the endurance group (P= 0.02) and by 41.55% in the concurrent group (P=0.02). Cortisol (cor) increased by 55.73% in the endurance (P=0.00) and by 41.55% in the concurrent (P=0.02) group, respectively. Testosterone- to-Cholesterol ratio (TT:Cor) decreased by 125.80% by and 78.12% in the endurance (P=0.00) and concurrent (0.04) groups, respectively. Conclusions: The results of this study showed that the decrease in HDL, an increasing trend in TT in the strength training group and also a decrease in TT and an improved lipids profile in the endurance and concurrent training groups can be a function of the training type.
EN
Lipid multilayer microarrays are a promising approach to miniaturize laboratory procedures by taking advantage of the microscopic compartmentalization capabilities of lipids. Here, we demonstrate a new method to pattern lipid multilayers on surfaces based on solvent evaporation along the edge where a stencil contacts a surface called evaporative edge lithography (EEL). As an example of an application of this process, we use EEL to make microarrays suitable for a cell-based migration assay. Currently existing cell migration assays require a separate compartment for each drug which is dissolved at a single concentration in solution. An advantage of the lipid multilayer microarray assay is that multiple compounds can be tested on the same surface. We demonstrate this by testing the effect of two different lipophilic drugs, Taxol and Brefeldin A, on collective cell migration into an unpopulated area. This particular assay should be scalable to test of 2000 different lipophilic compounds or dosages on a standard microtiter plate area, or if adapted for individual cell migration, it would allow for high-throughput screening of more than 50,000 compounds per plate.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.