Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  lattice parameter
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Molecular dynamics simulations with condensed-phase optimized molecular potentials for atomistic simulation studies force field are performed to investigate the structure, equation of state, and mechanical properties of high energetic material pentaerythritol tetranitrate. The equilibrium structural parameters, pressure-volume relationship and elastic constants at ambient conditions agree excellently with experiments. In addition, fitting the pressure-volume data to the Birch-Murnaghan or Murnaghan equation of state, the bulk modulus B₀ and its first pressure derivative B'₀ are obtained. Moreover, the elastic constants are calculated in the pressure range of 0-10 GPa at room temperature and in the temperature range of 200-400 K at the standard pressure, respectively. By the Voigt-Reuss-Hill approximation, the mechanical properties such as bulk modulus B, shear modulus G, and the Young modulus E are also obtained successfully. The predicted physical properties under temperature and pressure can provide powerful guidelines for the engineering application and further experimental investigations.
Open Physics
|
2005
|
vol. 3
|
issue 3
395-408
EN
Solid-solution formation in binary aluminium-based alloys is due essentially to the combined effects of the size and valence of solvent and solute atoms, as expected by the four Hume-Rothery rules. The lattice parameter of aluminium in the solid solution of the sputtered Al−Fe films is [Al-a (Å)=4.052−6.6×10−3Y]. The increasing and decreasing evolution of the lattice parameter of copper [Cu-a (Å)=3.612+1.8×10−3Z] and aluminium [Al-a (Å)=4.048−1.6×10−3X] in the sputtered Al-1.8 to 92.5 at. % Cu films is a result of the difference in size between the aluminium and copper atoms. The low solubility of copper in aluminium (<1.8 at % Cu) is due to the valences of solvent and solute atoms in contrast with other sputtered films prepared under similar conditions, such as Al−Mg (20 at. % Mg), Al−Ti (27 at. % Ti), Al−Cr (5at. % Cr) and Al−Fe (5.5 at. % Fe) where the solubility is due to the difference in size.
EN
In this work we used the first ab initio calculations to study the stability of the binary alloys BN, BP and BAs and their behavior in the different phases of zinc-blende, Nacl and CsCl. The full potential linearized augmented plane wave method was employed within density functional theory. Our results show the difference in the calculated structural properties and the band structure is obtained for the zinc-blende structure. We have investigated the lattice parameters and band gap energies. We also give the valence charge density at a high pressure and the analysis of the density of states.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.