Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  lactose hydrolysis
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this study, β-galactosidase enzyme from Kluyveromyces fragilis was immobilised on a commercial polyethersulfone membrane surface, 10 kDa cut-off. An integrated process, concerning the simultaneous hydrolysis-ultrafiltration of whey lactose was studied and working conditions have been fixed at 55°C and pH 6.9, the same conditions that are used for the industrial process of protein concentration. For the immobilisation, best results were obtained using 5% (v/v) of glutaraldehyde solution and 0.03 M galactose; the total activity recovery coefficient (TARC) was 44.2%. The amount of immobilised enzyme was 12.49 mg with a total activity of 86.3 LAU at 37°C, using 5% (w/v) lactose solution in phosphate buffer (100 mM pH 6.9). The stability of the immobilised enzyme was approximately 585 fold higher in comparison with the stability of free enzyme. Multipoint covalent immobilisation improves the stability of the enzyme, thereby enhancing the decision to use the membrane as a filtering element and support for the enzyme immobilisation.
EN
The present study demonstrates the immobilization of β galactosidase from apricots (Prunus armeniaca kaisa) on an inexpensive concanavalin A layered cellulose-alginate hybrid gel. Immobilized β galactosidase retained 78% of the initial activity after crosslinking by glutaraldehyde. It exhibited greater fraction of activity at both acidic and basic pH, and showed broad spectrum temperature optimum as compared to free enzyme. Moreover, immobilized enzyme exhibited higher thermal stability at 60°C and retained 80% of the original enzyme activity in presence of 3% galactose. The crosslinked immobilized enzyme showed improved hydrolysis of lactose from milk and whey in batch processes at 50°C as well as in continuous reactors operated at fl ow rate of 20 mL/h and 30 mL/h even after one month. Moreover, crosslinked adsorbed β galactosidase retained 76% activity even after its sixth repeated use, thereby promoting its use for lactose hydrolysis in various dairy products even for longer durations.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.