Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  joint angle
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Purpose. Isokinetic tests are often applied to assess muscular strength and EMG activity, however the specific ranges of motion used in testing (fully flexed or extended positions) might be constrictive and/or be painful for patients with injuries or under-going rehabilitation. The aim of this study was to examine the effects of different ranges of motion (RoM) when determining maximal EMG during isokinetic knee flexion and extension with different types of contractions and velocities. Methods. Eighteen males had EMG activity recorded on the vastus lateralis, vastus medialis, semitendinosus and biceps femoris muscles during five maximal isokinetic concentric and eccentric contractions for the knee flexors and extensors at 60° · s-1 and 180° · s-1. The root mean square of EMG was calculated at three different ranges of motion: (1) a full range of motion (90°-20° [0° = full knee extension]); (2) a range of motion of 20° (between 60°-80° and 40°-60° for knee extension and flexion, respectively) and (3) at a 10° interval around the angle where peak torque is produced. EMG measurements were statistically analyzed (ANOVA) to test for the range of motion, contraction velocity and contraction speed effects. Coefficients of variation and Pearson's correlation coefficients were also calculated among the ranges of motion. Results. Predominantly similar (p > 0.05) and well-correlated EMG results (r > 0.7, p ≤ 0.001) were found among the ranges of motion. However, a lower coefficient of variation was found for the full range of motion, while the 10° interval around peak torque at 180° · s-1 had the highest coefficient, regardless of the type of contraction. Conclusions. Shorter ranges of motion at around the peak torque angle provides a reliable indicator when recording EMG activity during maximal isokinetic parameters. It may provide a safer alternative when testing patients with injuries or undergoing rehabilitation.
EN
Soccer kicking kinematics has received wide interest in literature. However, while the instep-kick has been broadly studied, only few researchers investigated the inside-of-the-foot kick, which is one of the most frequently performed techniques during games. In particular, little knowledge is available about differences in kinematics when kicking with the preferred and non-preferred leg. A motion analysis system recorded the three-dimensional coordinates of reflective markers placed upon the body of nine amateur soccer players (23.0 ± 2.1 years, BMI 22.2 ± 2.6 kg/m2), who performed 30 pass-kicks each, 15 with the preferred and 15 with the non-preferred leg. We investigated skill kinematics while maintaining a perspective on the complete picture of movement, looking for laterality related differences. The main focus was laid on: anatomical angles, contribution of upper limbs in kick biomechanics, kinematics of the body Center of Mass (CoM), which describes the whole body movement and is related to balance and stability. When kicking with the preferred leg, CoM displacement during the ground-support phase was 13% higher (p<0.001), normalized CoM height was 1.3% lower (p<0.001) and CoM velocity 10% higher (p<0.01); foot and shank velocities were about 5% higher (p<0.01); arms were more abducted (p<0.01); shoulders were rotated more towards the target (p<0.01, 6° mean orientation difference). We concluded that differences in motor control between preferred and non-preferred leg kicks exist, particularly in the movement velocity and upper body kinematics. Coaches can use these results to provide effective instructions to players in the learning process, moving their focus on kicking speed and upper body behavior
EN
This study compared two different body positions at the finish of a stroke during stationary rowing exercise on physiological and kinematic measurements. Nine male and five female rowers volunteered for the study: mean age (± SD), body height and body mass were 27 ±9 yrs, 180.5 ±12.3 cm and 81.2 ±14.2 kg. The two body positions at the finish were controlled at an upright posture or a novel greater lean back position. All subjects completed 3 different experimental trials on a Concept IID rowing machine at 3 different exercise intensities and comparisons were made between the lean back position at the same stroke rate and the same power output as the upright trial. Power output, heart rate, oxygen uptake, energy expenditure and % efficiency were higher (p<0.05) with the greater lean back position at the same stroke rate compared to all other conditions. Range of motion at the hip, ankle, and elbow and the handle velocity and distance moved were greater (p<0.05) with the lean back position. In conclusion, a greater lean back posture at the finish during stationary rowing produces a higher power output and improved efficiency at the same stroke rate but at an elevated physiological cost compared to a more upright position. Despite the higher energy expenditure, the relative gain in power output and efficiency with no negative kinematic changes suggests that a greater lean back position at the finish will enhance performance during stationary rowing exercise.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.