Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  heat capacity
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
New analysis of heat capacity data is presented for LuZnSn2 compound that takes into account anharmonic effects together with the existence of Einstein modes. 119mSn Mössbauer spectroscopy was used to monitor the hyperfine parameters at the two crystallographically inequivalent Sn sites in the studied compound. The problem of non-unique mathematical resonance spectrum description and the problem how to choose physically meaningful set of hyperfine parameters will be thoroughly discussed. Measured quadrupole interaction constants by 119mSn Mössbauer spectroscopy give estimations for Vzz component of electric field gradient tensor at both Sn sites in LuZnSn2.
2
100%
EN
We explore two- and three-state Markov models driven out of thermal equilibrium by non-potential forces, to demonstrate basic properties of the steady heat capacity based on the concept of quasistatic excess heat. It is shown that large enough driving forces can make the steady heat capacity negative. For both the low- and high-temperature regimes we propose an approximative thermodynamic scheme in terms of “dynamically renormalized” effective energy levels.
3
100%
Open Chemistry
|
2007
|
vol. 5
|
issue 2
508-515
EN
Relative enthalpies for low-and high-temperature modifications of Na3FeF6 and for the Na3FeF6 melt have been measured by drop calorimetry in the temperature range 723–1318 K. Enthalpy of modification transition at 920 K, δtransH(Na3FeF6, 920 K) = (19 ± 3) kJ mol−1 and enthalpy of fusion at the temperature of fusion 1255 K, δfusH(Na3FeF6, 1255 K) = (89 ± 3) kJ mol−1 have been determined from the experimental data. Following heat capacities were obtained for the crystalline phases and for the melt, respectively: C p(Na3FeF6, cr, α) = (294 ± 14) J (mol K)−1, for 723 = T/K ≤ 920, C p(Na3FeF6, cr, β) = (300 ± 11) J (mol K)−1 for 920 ≤ T/K = 1233 and C p(Na3FeF6, melt) = (275 ± 22) J (mol K)−1 for 1258 ≤ T/K ≤ 1318. The obtained enthalpies indicate that melting of Na3FeF6 proceeds through a continuous series of temperature dependent equilibrium states, likely associated with the production of a solid solution. [...]
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.