Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Journals help
Years help
Authors help
Preferences help
enabled [disable] Abstract
Number of results

Results found: 33

Number of results on page
first rewind previous Page / 2 next fast forward last

Search results

Search:
in the keywords:  hardness
help Sort By:

help Limit search:
first rewind previous Page / 2 next fast forward last
EN
In this study, pack boronizing was applied to ash-blowing nozzles manufactured from AISI 1040 steels using Ekabor II powders as the boronizing source at a temperature of 1273 K for a duration of 8 h. Erosive wear tests of boride ash-blowing nozzles were carried out in ash delivery line of thermal reactor under actual working conditions. It was observed that erosive wear resistance of borided ash-blowing nozzles were increased 3 times as a result of the boronizing process. The improved wear resistance of the borided samples can be explained by increased surface hardness and higher work hardening.
EN
In this work, the influence of Tb-doping on structure, and especially hardness of nanocrystalline TiO2 thin films, has been described. Thin films were formed by a high-energy reactive magnetron sputtering process in a pure oxygen atmosphere. Undoped TiO2-matrix and TiO2:Tb (2 at. % and 2.6 at. %) thin films, had rutile structure with crystallite sizes below 10 nm. The high-energy process produces nanocrystalline, homogenous films with a dense and close packed structure, that were confirmed by X-ray diffraction patterns and micrographs from a scanning electron microscope. Investigation of thin film hardness was performed with the aid of a nanoindentation technique. Results of measurements have shown that the hardness of all manufactured nanocrystalline films is above 10 GPa. In the case of undoped TiO2 matrix, the highest hardness value was obtained (14.3 GPa), while doping with terbium results in hardness decreasing down to 12.7 GPa and 10.8 GPa for TiO2:(2 at. % Tb) and TiO2:(2.6 at. % Tb) thin films, respectively. Incorporation of terbium into TiO2-matrix also allows modification of the elastic properties of the films.
9
Content available remote

Topography and nanomechanical properties of Pd-C films

88%
EN
Atomic force microscopy (AFM) topographical studies and results of nanoindentation experiment for several palladium-carbon films (Pd-C film) deposited on various substrates and with varying palladium content are presented. Pd-C films were prepared by a physical vapor decomposition (PVD) process and next were modified by a chemical vapor decomposition (CVD) method to obtain carbonaceous porous structure with dispersed palladium nanograins and a variation in roughness. The dependence of film topography on the kind of substrate such as Al2O3, Mo polycrystalline foil and fused silica was studied by AFM. Nanomechanical properties such as hardness and the reduced indentation modulus were determined by nanoindentation. A comparison of these values for films with different Pd content deposited on various substrates is presented.
EN
In this work, the differences in nanomechanical properties, topography and morphology of carbonpalladium (C-Pd) films were studied. These films were prepared with a Physical Vapour Deposition method on various substrates with different technological parameters. We show that duration of the PVD process is a crucial factor affecting the palladium content in these films. The differences in thickness of films depend on the distance between source boats and substrates. The nanomechanical properties of C-Pd films were studied with nanoindentation. Their topography and morphology was ascertained with Atomic Force Microscopy and Scanning Electron Microscopy. It was found that the mechanical properties of C-Pd films depend on the content of palladium and on the morphology and topography of these films. The various types of carbon-palladium films containing palladium nanograins incorporated in a carbon matrix that were, investigated in this paper, seem to be promising materials for numerous applications.
EN
Research of the effect of structure on composition and physicomechanical properties of transition metals diboride films deposited by RF-magnetron sputtering was carried out. It was shown that there is a wide range of different structures, from amorphous to nanocrystalline one with 1-40 nm nanocrystallite sizes in the case of transition metals diboride films. The correlation between the structure, composition, and physicomechanical properties of transition metals diboride films was established.
first rewind previous Page / 2 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.