Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  gold
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Gold is a dental material with very good mechanical properties. It is also aesthetic and biocompatible with the tissues of the oral cavity even at 100% purity. Prosthetic restorations made of pure gold or its alloys can be practiced either through a normal casting, as well as through using the galvanoforming technique. The electrolytic method was first introduced into dentistry about 20 years ago and it allows for producing “pure” gold (which means 99.99% Au). The lack of additions of other metals improves the properties of dental prostheses, such as marginal tightness, esthetics, biocompatibility, and it helps in eliminating any allergic reactions. The literature review presented in this paper is a comparison of the traditional casting method with the newer galvanoforming technique.
EN
The effect of pulsed laser treatment of metal, and metal blacks, was studied. Gold and black gold thin films were fabricated by thermal evaporation of gold in a vacuum and nitrogen atmosphere respectively. Black gold films were grown in a nitrogen atmosphere at pressures of 200 Pa and 300 Pa. UV pulsed laser radiation (λ = 266 nm, τ = 4 ns), with fluence ranging from 1 mJ·cm−2 to 250 mJ·cm−2 was used for the film treatment in a vacuum and nitrogen atmosphere. The nitrogen pressure was varied up to 100 kPa. Surface structure modifications were analyzed by optical microscopy, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Energy dispersive X-ray spectroscopy (EDX) was used for chemical characterization of the samples. A significant dependence of the film optical and structural properties on laser treatment conditions (laser fluence, ambient pressure and number of applied pulses) was found. The threshold for observable damage and initiation of changes of morphology for gold and black gold surfaces was determined. Distinct modifications were observed for fluences greater than 106 mJ·cm−2 and 3.5 mJ·cm−2 for the gold and black gold films respectively. Absorbtivity of the black gold film is found to decrease with an increase in the number of laser pulses. Microstructural and nanostructural modifications after laser treatment of the black gold film were observed. EDX analysis revealed that no impurities were introduced into the samples during both the deposition and laser treatment.
EN
The synthesis of gold and silver nanoparticles by the blue-green algae Spirulina platensis for medical purposes was studied. A complex of optical and analytical methods was used in order to characterize produced nanoparticles. It was shown that the extracellular formation of metal nanoparticles of spherical shape with sizes in the range between 8 and 40 nm (the average size of 20-30 nm) takes place. The characteristics of gold and silver nanoparticles in the Spirulina biomass were compared. The role of biosorption processes in the synthesis of nanoparticles was estimated by using equilibrium dialysis. A positive influence of sonication on the process of microbial synthesis and yield of nanoparticles were demonstrated. The neutron activation analysis and the atomic absorption spectrometry were applied for characterizing the dynamics of gold and silver nanoparticles formation in the Spirulina platensis biomass. The neutron activation analysis was used for studying the elemental content of the Spirulina platensis biomass.
PL
Zbadano syntezę nanocząstek złota i srebra przez niebieskozielone glony Spirulina platensis, które są wykorzystywane do celów medycznych. Do scharakteryzowania wytworzonych nanocząstek zastosowano szereg metod optycznych i analitycznych. Wykazano, że zachodzi tworzenie pozakomórkowej, sferycznej nanocząstki o rozmiarach w zakresie od 8 do 40 nm (średnia wielkość 20-30 nm). Porównano charakterystyki nanocząstek złota i srebra wytworzonych w biomasie Spiruliny. Do oceny roli procesów biosorpcji w syntezie nanocząstek wykorzystano dializy równowagowe. Wykazano pozytywny wpływ ultradźwięków na procesy mikrobiologiczne i na wydajność syntezy nanocząstek. Do określenia dynamiki tworzenia nanocząsteczek złota i srebra w biomasie Spirulina platensis zastosowano neutronową analizę aktywacyjną i spektrometrię absorpcji atomowej. Stężenia pierwiastków w biomasie Spirulina platensis określono za pomocą neutronowej analizy aktywacyjnej
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.