Introduction. Genetic findings in several epilepsy syndromes provide insights into the pathophysiology of specific subtypes of epilepsy and into mechanisms of epileptogenesis, because the genes encoding ion channels, and proteins associated to the vesical synaptic cycle, or involved in energy metabolism, influence neuronal excitability. Aim. The following aspects of genetic epilepsies will be discussed: new proposed “organization of the epilepsies”, genetic and other etiologies, electroclinical syndromes and their genetics and genetic testing in the epilepsies. Methods. The updated review is based on OMIM™ (Online Mendelian Inheritance in Man). Review and remarks. Because of the vast genetic and phenotypic heterogeneity, bridging genotype and phenotype remains a major challenge in epilepsy genetics. The so-called “idiopathic” epilepsies are genetically determined. The new ILAE proposal on the “organization” of the epilepsies takes into account the genetic advances. However, despite proposed changes in the nomenclature, the concept of the electroclinical syndrome, i.e. seizure types, age-dependent onset, electroencephalographic criteria, and concomitant symptoms, such as movement disorders or developmental delay, remain important criteria to group the epilepsies. Although also the differentiation “generalized” versus “focal” is nowadays discussed critically, for practical reasons these categories remain valid. Similarly the categories “benign” syndromes of early childhood, epileptic encephalopathies, and fever-associated syndromes, have their utility. Conclusions. The large number of genetic defects in the epilepsies complicates their analysis. However, it is anticipated that novel genetic methods, that are able to analyze all known genes at a reasonable price, will help identify novel diagnostic and therapeutic avenues, including prognostic and genetic counseling. Today it is already possible to include into genetic testing genes responsible for the side effects of AEDs. In addition, for some epilepsy phenotypes it has became possible to predict the most efficacious antiepileptic drugs for patients based on their genetic makeup. Thus, the development of individualized medicine is expected to greatly improve the management of epilepsy patients.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.