Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 15

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  gene therapy
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Manipulation of angiogenesis in vivo is an example of successful gene therapy strategies. Overexpression of angiogenic genes like VEGF, FGF or PDGF causes new vessel formation and improves the clinical state of patients. Gene therapy is a very promising procedure but requires large amounts of pharmaceutical-grade plasmid DNA. In this regard we have constructed a bicistronic plasmid DNA vector encoding two proangiogenic factors, VEGF165 and FGF-2. The construct (pVIF) contains the internal ribosome entry site (IRES) of the encephalomyocarditis virus (ECMV) which permits both genes to be translated from a single bicistronic mRNA. The IRES sequence allows for a high efficiency of gene expression in vivo. The pVIF vector was characterized in vitro and in vivo. In vivo angiogenesis studies showed that the bicistronic vector encoding two proangiogenic factors induces the formation of new vessels significantly more than pVEGF165 or pFGF-2 alone. In our opinion the combined proangiogenic approach with VEGF165 and FGF-2 is more powerful and efficient than single gene therapy. We also postulate that IRES sequence can serve as a useful device improving efficiency of gene therapy.
EN
Sickle cell disease is a set of illnesses characterized by the misshaping and breakdown of red blood cells. Red blood cells twist into a sickle shape in sickle cell disease, an inherited set of illnesses. The cells die early, resulting in a lack of healthy red blood cells (sickle cell anemia), and they might impede blood flow, causing pain (sickle cell crisis). Vernon Mason coined the term "sickle cell anemia" in 1922. SCD is thought to have killed approximately 114,800 individuals worldwide, and it is more common among people whose ancestors lived in tropical and subtropical sub-Saharan Africa, where malaria is or was prevalent. There are several types of SCD, including homozygous HbS and HbS/HbC co-inheritance (usually called HbSC). A genetic mutation causes the condition, which disrupts the iron-rich molecule essential for making blood red and transporting oxygen. SCD has been treated using a variety of approaches. The use of hydroxycarbamide and L-glutamine, blood transfusions, bone marrow transplants, gene therapy, and nutritional supplementation are just a few of them. Gene therapy is the most effective treatment option on the list. The method relies on modifying and reprogramming cells from the patient's own blood cells, as well as genetic engineering, to fix the inborn genetic defect. hydroxyurea, on the other hand, has been shown to change the course of the disease. Finally, if utilized correctly, a combination of available therapeutic medications could greatly improve the disease.
3
100%
EN
In the majority of potential applications gene therapy will require an effective transfer of a transgene in vivo resulting in high-level and long-term transgene expression, all in the absence of significant toxicity or inflammatory responses. The most efficient vehicles for delivery of foreign genes to the target tissues are modified adenoviruses. Adenoviral vectors of the first generation, despite the high infection efficacy, have an essential drawback: they induce strong immune response, which leads to short term expression of the transgene, and limits their usefulness in clinical trials. In contrast, helper-dependent adenoviral vectors (HdAd) lacking all viral coding sequences display only minimal immunogenicity and negligible side-effects, allowing for long-term transgene expression. Thus, HdAd vehicles have become the carrier of choice for adenoviral vector-mediated experimental gene therapy, effectively used in animal models for delivery of transgenes into the liver, skeletal muscle, myocardium or brain. Strong and long-lasting expression of therapeutic genes has allowed for successful treatment of dyslipidemias, muscular dystrophy, obesity, hemophilia, and diabetes. Additionally, the large cloning capacity of HdAd, up to 37 kb, facilitates the use of physiologically regulated, endogenous promoters, instead of artificial viral promoter sequences. This enables also generation of the single vectors expressing multiple genes, which can be potentially useful for treatment of polygenic diseases. In this review we characterize the basic features of HdAd vectors and describe some of their experimental and potential clinical applications.
EN
The extracellular domain of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) may function as a soluble cytokine to selectively kill various cancer cells without toxicity to most normal cells. We used a high-biosafety plasmid pVAX1 as a vector and constructed a recombinant plasmid expressing the extracellular domain (95-281 aa) of human TRAIL fused with signal peptides of human IgGγ, designated as pVAX-sT. Transduction of human BEL7402 liver cancer cells with pVAX-sT led to high levels of sTRAIL protein in the cell culture media and induced apoptosis. The therapeutic potential of pVAX-sT was then evaluated in the BEL7402 transplanted naked mouse model. Subsequent intratumoral administration of naked pVAX-sT resulted in the expression of soluble TRAIL in the sera and the tumor site, as well as effective suppression of tumor growth, with no toxicity to liver. In conclusion, the successful inhibition of liver cancer growth and the absence of detectable toxicity suggest that pVAX-sT could be useful in the gene therapy of liver cancer.
EN
Angiogenesis, i.e. formation of new blood vessels out of pre-existing capillaries, is essential to the development of tumour vasculature. The discovery of specific antiangiogenic inhibitors has important therapeutic implications for the development of novel cancer treatments. Vasostatin, the N-terminal domain of calreticulin, is a potent endogenous inhibitor of angiogenesis and tumour growth. In our study, using B16(F10) murine melanoma model and electroporation we attempted intramuscular transfer of human vasostatin gene. The gene therapy was combined with antiangiogenic drug dosing schedule of a known chemotherapeutic (cyclophosphamide). The combination of vasostatin gene therapy and cyclophosphamide administration improved therapeutic effects in melanoma tumours. We observed both significant inhibition of tumour growth and extended survival of treated mice. To our knowledge, this is one of the first reports showing antitumour efficacy of electroporation-mediated vasostatin gene therapy combined with antiangiogenic chemotherapy.
6
88%
EN
The ability of various cytokines to hamper tumor growth or to induce anti-tumor immune response has resulted in their study as antitumor agents in gene therapy approaches. In this review we will concentrate on the costimulation of antitumor immune responses using modification of various cell types by cytokine genes. Several strategies have emerged such as (i) modification of tumor cells with cytokine genes ex vivo (whole tumor cell vaccines), (ii) ex vivo modification of other cell types for cytokine gene delivery, (iii) delivery of cytokine genes into tumor microenvironment in vivo, (iv) modification of dendritic cells with cytokine genes ex vivo. Originally single cytokine genes were used. Subsequently, multiple cytokine genes were applied simultaneously, or in combination with other factors such as chemokines, membrane bound co-stimulatory molecules, or tumor associated antigens. In this review we discuss these strategies and their use in cancer treatment as well as the promises and limitations of cytokine based cancer gene therapy. Clinical trials, including our own experience, employing the above strategies are discussed.
EN
Relatively successful elsewhere, gene delivery aimed at the vasculature and kidney has made very little progress. In the kidney, the hurdles are related to the unique structure–function relationships of this organ and in the blood vessels to a variety of, mostly endothelial, factors making the delivery of transgenes very difficult. Among gene-therapeutic approaches, most viral gene delivery systems utilized to date have shown significant practical and safety-related limitations due to the level and duration of recombinant transgene expression as well as their induction of a significant host immune response to vector proteins. Recombinant adeno-associated virus (rAAV) vectors appear to offer a vehicle for safe, long-term transgene expression. rAAV-based vectors are characterized by a relative non-immunogenicity and the absence of viral coding sequences. Furthermore, they allow for establishment of long-term latency without deleterious effects on the host cell. This brief review addresses problems related to transgene-delivery to kidney and vasculature with particular attention given to rAAV vectors. The potential for gene therapy as a strategy for selected renal and vascular diseases is also discussed.
9
Content available remote

Targeting site-specific chromosome integration.

75%
EN
The concept of gene therapy was introduced with great promise and high expectations. However, what appeared simple in theory has not translated into practice. Despite some success in clinical trials, the research community is still facing an old problem: namely, the need for a vector that can deliver a gene to target cells without adverse events while maintaining a long-term therapeutic effect. Some of these challenges are being addressed by the development of hybrid vectors which meld two different viral systems to incorporate efficient gene delivery and large cloning capacity with site-specific integration. The two known systems that integrate genes into specific sites in mammalian genomes are the adeno-associated virus and phage integrases. Recent experiments with hybrid vectors incorporating both of these systems are encouraging. However, extensive research should be directed towards the safety and efficacy of this approach before it will be available for gene therapy.
10
Content available remote

Inhibition and regression of atherosclerotic lesions.

75%
Acta Biochimica Polonica
|
2005
|
vol. 52
|
issue 2
311-319
EN
Atherosclerosis, once believed to be a result of a slow, irreversible process resulting from lipid accumulation in arterial walls, is now recognized as a dynamic process with reversibility. Liver-directed gene therapy for dyslipidemia aims to treat patients who are not responsive to currently available primary and secondary prevention. Moreover, gene therapy strategies have also proved valuable in studying the dynamics of atherosclerotic lesion formation, progression, and remodeling in experimental animals. Recent results on the long-term effect of gene therapy suggest that hepatic expression of therapeutic genes suppresses inflammation and has profound effects on the nature of the atherogenic process.
EN
Alterations in the expression of growth factors and their receptors are associated with the growth and development of human tumors. One such growth factor is IGF-I (insulin-like growth factor I ), a 70-amino-acid polypeptide expressed in many tissues, including brain. IGF-I is also expressed at high levels in some nervous system-derived tumors, especially in glioblastoma. When using IGF-I as a diagnostic marker, 17 different tumors are considered as expressing the IGF-I gene. Malignant glioma, the most common human brain cancer, is usually fatal. Average survival is less than one year. Our strategy of gene therapy for the treatment of gliomas and other solid tumors is based on: 1) diagnostic using IGF-I gene expression as a differential marker, and 2) application of "triple-helix anti-IGF-I " therapy. In the latter approach, tumor cells are transfected with a vector, which encodes an oligoribonucleotide - an RNA strand containing oligopurine sequence which might be capable of forming a triple helix with an oligopurine and/or oligopyrimidine sequence of the promotor of IGF-I gene (RNA-IGF-I DNA triple helix). Human tumor cells transfected in vitro become down-regulated in the production of IGF-I and present immunogenic (MHC-I and B7 expression) and apoptotic characteristics. Similar results were obtained when IGF-I antisense strategy was applied. In both strategies the transfected cells reimplanted in vivo lose tumorigenicity and elicit tumor specific immunity which leads to elimination of established tumors.
|
2014
|
vol. 12
|
issue 3
197-205
EN
According to statistics, ovarian cancer is the fourth cause of death due to gynecologic cancer. It results from late diagnosis of the disease, caused by the lack of characteristic symptoms, as well as from unsatisfactory treatment methods due to e.g. cell resistance to chemotherapy. The search for new therapies is still in progress. It is believed that preparations whose activity is based on RNA interference, i.e. gene silencing with the use of siRNA, are a promising group of new antineoplastic medications. Fire et al. were awarded the Nobel Prize for discovering this phenomenon. The phenomenon of siRNA interference in healthy cells is a natural protective mechanism. Genes are silenced in the cytoplasm with the use of the Dicer enzyme. siRNA gene preparations are delivered into cells with the use of viral methods such as AAV or adenoviruses, as well as non-viral methods e.g. with the use of liposomes. Clinical trials concerning siRNA preparations are now in the first phase. They are conducted on two gene preparations: CALAA-01 and siRNA nanomolecule directed against PLK1. In this paper attention was drawn to the therapeutic meaning of siRNA sequences in relation to the following genes: MDR1, VEGF, MMP, CD44, HER2, SHH, STAT. Both experimental and clinical studies give hope for the use of the described mechanisms in fight with ovarian cancer in the future.
PL
Rak jajnika według statystyk zajmuje czwarte miejsce wśród zgonów z powodu nowotworów ginekologicznych. Wynika to zarówno z późnego rozpoznania choroby, spowodowanego brakiem charakterystycznych objawów, jak i stale niezadowalających efektów leczenia, m.in. ze względu na oporność komórek na chemioterapię. Poszukiwanie nowych metod terapii jest więc nadal aktualne. Uważa się, że obiecującą grupą potencjalnych leków przeciwnowotworowych mogą być preparaty, których aktywność opiera się na zjawisku interferencji RNA, czyli wyciszaniu genów za pomocą siRNA. Za odkrycie tego zjawiska Fire i wsp. zostali uhonorowani Nagrodą Nobla. Zjawisko interferencji siRNA w prawidłowych komórkach jest naturalnym mechanizmem obronnym. Do wyciszenia genów dochodzi w cytoplazmie przy udziale enzymu Dicer. Preparaty genowe siRNA wprowadza się do komórek, wykorzystując metody wirusowe, takie jak AAV czy adenowirusy, a także za pomocą metod niewirusowych, np. z zastosowaniem liposomów. Badania kliniczne preparatów genowych siRNA znajdują się obecnie w pierwszej fazie. Prowadzone są na dwóch preparatach genowych CALAA-01 oraz na nanocząsteczce siRNA skierowanej przeciw PLK1. W niniejszej pracy skupiono uwagę na terapeutycznym znaczeniu sekwencji siRNA w stosunku do genów: MDR1, VEGF, MMP, CD44, HER2, SHH, STAT. Zarówno badania eksperymentalne, jak i kliniczne niosą nadzieję na wykorzystanie w przyszłości omawianego mechanizmu do walki z rakiem jajnika.
13
Content available remote

Use of HIV as a gene transfer vector

63%
EN
Despite the extensive research efforts over the past 25 years that have focused on HIV, there is still no cure for AIDS. However, tremendous progress in the understanding of the structure and biology of the HIV virus led to the development of safe and potent HIV-based transgene delivery vectors. These genetic vehicles are referred to as lentiviral vectors. They appear to be better suited for particular applications, such as transgene delivery into stem cells, compared to other viral- and non-viral vectors. This is because Lentivirus-based vectors can efficiently infect nondividing and slowly dividing cells. In the present review article, the current state of understanding of HIV-1 is discussed and the main characteristics that had an impact on vector design are outlined. A historical view on the vector concept is presented to facilitate discussion of recent results in vector engineering in a broader context. Subsequently, a state of the art overview concerning vector construction and vector production is given. This review also touches upon the subject of lentiviral vector safety and related topics that can be helpful in addressing this issue are discussed. Finally, examples of Lentivirus-based gene delivery systems and their applications are presented, with emphasis on animal transgenesis and human gene therapy.
EN
Spinal muscular atrophy (SMA) is a genetic disorder caused by mutations in the SMN1 gene and, consequently, a deficiency of the SMN (survival of motor neuron) protein, which plays a key role in regulating gene expression in motoneurons. Its absence leads to degeneration and apoptosis of the anterior horn cells of the spinal cord and, as a consequence, to muscular atrophy. In the human genome the SMN gene is found in at least two copies: SMN1 and SMN2. Both genes encode the same protein, however, SMN1 transcripts are full-length (FL-SMN) and 90% of SMN2 transcripts are deprived of exon 7 (SMN-Δ7), which causes the protein to be non-functional. FL-SMN is necessary for proper splicing process. Low concentration of the SMN protein also impairs the dynamics of the actin skeleton, which results in inhibition of motoneuron axon growth. Hitherto SMA treatment was based mainly on neuroprotective and muscle strength enhancing approaches. Currently, thanks to the use of antisense nucleotides (ASO), it is possible to modulate the splicing process of SMN2, which allows the incorporation of exon 7 into the SMN2 transcripts. Nusinersen is an ASO that has been approved for clinical use in USA and Europe; it is fully refunded in Poland. The therapy is intended for the treatment of patients with all types of SMA at all ages. Another treatment strategy is the gene therapy called onasemnogene abeparvovec (AVXS-101) which allows introducing the correct copy of the SMN1 gene into the patient’s body. The carrier of the therapeutic gene that enters only the cells of the nervous system is an AAV viral vector. This drug has been approved by the FDA for the treatment of SMA in patients under 2 years of age.
PL
Rdzeniowy zanik mięśni, SMA (spinal muscular atrophy) to genetyczna choroba powodowana mutacją genu SMN1 i w konsekwencji niedoborem białka SMN (survival of motor neuron), które odgrywa kluczową rolę w regulacji ekspresji genów w motoneuronach. Jego brak prowadzi do zwyrodnienia i apoptozy komórek rogów przednich rdzenia kręgowego i w konsekwencji zaniku mięśni. Gen SMN w ludzkim genomie występuje w co najmniej dwóch kopiach: SMN1 i SMN2. Oba geny kodują identyczne białko, jednak transkrypty SMN1 mają pełną długość (FL-SMN), a 90% transkryptów SMN2 jest pozbawiona eksonu 7 (SMN-Δ7), co powoduje niefunkcjonalność białka. FL-SMN jest niezbędne do prawidłowego przeprowadzenia procesu splicingu. Niskie stężenie białka SMN upośledza także dynamikę szkieletu aktynowego, co skutkuje zahamowaniem wzrostu aksonów motoneuronów. Dotychczasowe leczenie SMA opierało się głównie na działaniach neuroprotekcyjnych i wzmacniających siłę mięśni. Obecnie, dzięki wykorzystaniu antysensowych nukleotydów (ASO), możliwa jest terapia modulująca przebieg splicingu, która pozwala na włączenie eksonu 7 do transkryptu SMN2. Takim ASO jest nusinersen, który został zatwierdzony do użytku w USA i Europie; jest on w pełni refundowany w Polsce. Terapeutyk jest przeznaczony do leczenia pacjentów ze wszystkimi typami SMA w każdym wieku. Inną strategią leczenia jest terapia genowa pod nazwą onasemnogene abeparvovec (AVXS-101), polegająca na wprowadzeniu do organizmu pacjenta prawidłowej kopii genu SMN1. Nośnikiem genu terapeutycznego, wnikającego jedynie do komórek układu nerwowego, jest wektor wirusowy AAV. Lek ten został zatwierdzony przez FDA w leczeniu SMA pacjentów poniżej 2. roku życia.
15
51%
OphthaTherapy
|
2023
|
vol. 10
|
issue 1
7-11
PL
Od wielu lat trwają prace badawcze nad opracowaniem skutecznych i bezpiecznych leków przeciwjaskrowych. Podstawę leczenia stanowi ciągle baroprotekcja, ponieważ jest to praktycznie jedyna dostępna metoda umożliwiająca ochronę nerwu wzrokowego i spowolnienie progresji, jaka może być łatwo kontrolowana przez lekarza okulistę. Badania prowadzone są również w kierunku neuroprotekcji; ocenia się w nich związki zarówno nowe, jak i te, które od lat są już stosowane w ramach leczenia wspomagającego. Największe nadzieje wzbudza terapia genowa, wiąże się z nią jednak jeszcze wiele problemów do rozwiązania, ale tylko ona może umożliwić całkowite wyleczenie.
EN
Research efforts to develop effective and safe antiglaucoma drugs have been ongoing for many years. The cornerstone of treatment is still baroprotection, as this is virtually the only method available to protect the optic nerve and slow glaucoma progression, which can be easily controlled by an ophthalmologist. Research is also being conducted in the direction of neuroprotection, where new compounds are being evaluated, as well as those that have been used for years as adjunctive treatments. The greatest hope lies in gene therapy, which still has many problems to be solved, but it is the only one that offers hope for the patient’s complete recovery.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.