Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  gene regulation
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Interferons (IFNs) induce gene expression by phosphorylating latent transcription factors belonging to the signal transducer and activator of transcription (STAT) family, mediated by janus kinases (Jaks). STAT dimers directly activate genes containing the IFNγ activation site (GAS) DNA element, with different STAT proteins displaying slightly different intrinsic DNA binding specificities. The combinatorial association of STATs with the additional DNA binding adaptor protein interferon regulatory factor (IRF)9 expands the range of enhancer elements that can be targeted by the JAK-STAT pathway to interferon-stimulated response element (ISRE) and IRF response element (IRE). Based on the amino-acid sequence similarity within the IRF family and functional overlap with the STAT family, in this paper we hypothesize that other IRF members could serve as adapter proteins for the STATs during IFN responses to redirect them to subsets of ISRE, GAS and/or IRE-containing IFN-stimulated genes (ISGs). In addition, the fact that STAT2 homodimers are not capable of binding consensus GAS sites leaves the possibility for a novel type of DNA-binding site bound by STAT2 homodimers and potentially other STAT complexes.
EN
MicroRNAs (miRNAs) are small non-coding RNAs that have been found in most of the eukaryotic organisms. They are involved in the regulation of gene expression at the post-transcriptional level in a sequence specific manner. MiRNAs are produced from their precursors by Dicer-dependent small RNA biogenesis pathway. Involvement of miRNAs in a wide range of biological processes makes them excellent candidates for studying gene function or for therapeutic applications. For this purpose, different RNA-based gene silencing techniques have been developed. Artificially transformed miRNAs (amiRNAs) targeting one or several genes of interest represent one of such techniques being a potential tool in functional genomics. Here, we present a new approach to amiRNA*design, implemented as AmiRNA Designer software. Our method is based on the thermodynamic analysis of the native miRNA/miRNA* and miRNA/target duplexes. In contrast to the available automated tools, our program allows the user to perform analysis of natural miRNAs for the organism of interest and to create customized constraints for the design stage. It also provides filtering of the amiRNA candidates for the potential off-targets. AmiRNA Designer is freely available at http://www.cs.put.poznan.pl/arybarczyk/AmiRNA/.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.