Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 7

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  fractal dimension
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Open Physics
|
2009
|
vol. 7
|
issue 2
264-269
EN
The SEM microfractographies of Zircaloy-4 are studied by the time-series method. We first develop a computer application which associates a time series to each SEM micrograph. Furthermore, we will apply the phase space embedding technique to reconstruct the attractor and to compute the autocorrelation dimension. Using the fractal analysis technique, the SEM microfractographies of the fracture surface of the Zircaloy-4 samples have been analyzed.
EN
Nanostructured silica films using a simple and effective sol-gel spin coating technique were synthesized and the influence of ammonia/sol ratios on the particle size and thickness of this film was investigated. In addition, fractal dimensions of the prepared films were determined using the scattering response technique. The samples were characterized by atomic force microscopy and UV-vis spectroscopy. Comparing optical method and image analysis of atomic force microscopy micrographs, the fractal dimension of silica nanoparticled thin films was determined. The fractal dimensions of the films verified by atomic force microscopy analysis were found to be around 2.03 which is very close to the values (2.0358, 2.0325, and 2.0335) obtained using optical method. As a result of these findings, precise determination of the nanoparticled silica thin films fractal dimension using both optical and surface analysis methods was realized.
EN
We report that both space and time, in which a system of interacting cells exists, possess fractal structure. Each single cell of the system can restore the hierarchical organization and dynamic features of the entire tumor. There is a relationship between dynamics of gene expression and connectivity (i.e., interconnectedness which denotes the existence of complex, dynamic relationships in a population of cells leading to the emergence of global features in the system that would never appear in a single cell existing out of the system). Fractal structure emerges owing to non-bijectivity of dynamic cellular network of genes and their regulatory elements. It disappears during tumor progression. This latter state is characterized by damped dynamics of gene expression, loss of connectivity, loss of collectivity (i.e., capability of the interconnected cells to interact in a common mode), and metastatic phenotype. Fractal structure of both space and time is necessary for a cellular system to self-organize. Our findings indicate that results of molecular studies on gene expression should be interpreted in terms of space-time geometry of the cellular system. In particular, the dynamics of gene expression in cancer cells existing in a malignant tumor is not identical with the dynamics of gene expression in the same cells cultured in the monolayer system.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.