Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  exosomes
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Therapies based on RNA interference (RNAi) hold a great potential for targeted interference of the expression of specific genes. Small-interfering RNAs (siRNA) and micro-RNAs interrupt protein synthesis by inducing the degradation of messenger RNAs or by blocking their translation. RNAibased therapies can modulate the expression of otherwise undruggable target proteins. Full exploitation of RNAi for medical purposes depends on efficient and safe methods for delivery of small RNAs to the target cells. Tremendous effort has gone into the development of synthetic carriers to meet all requirements for efficient delivery of nucleic acids into particular tissues. Recently, exosomes unveiled their function as a natural communication system which can be utilized for the transport of small RNAs into target cells. In this review, the capabilities of exosomes as delivery vehicles for small RNAs are compared to synthetic carrier systems. The step by step requirements for efficient transfection are considered: production of the vehicle, RNA loading, protection against degradation, lack of immunogenicity, targeting possibilities, cellular uptake, cytotoxicity, RNA release into the cytoplasm and gene silencing efficiency. An exosomebased siRNA delivery system shows many advantages over conventional transfection agents, however, some crucial issues need further optimization before broad clinical application can be realized.
EN
Exosomes are membrane vesicles of endocytic origin that participate in inter-cellular communication. Environmental and physiological conditions affect composition of secreted exosomes, their abundance and potential influence on recipient cells. Here, we analyzed protein component of exosomes released in vitro from cells exposed to ionizing radiation (2Gy dose) and compared their content with composition of exosomes released from control not irradiated cells. Exosomes secreted from FaDu cells originating from human squamous head and neck cell carcinoma were analyzed using LC-MS/MS approach. We have found that exposure to ionizing radiation resulted in gross changes in exosomal cargo. There were 217 proteins identified in exosomes from control cells and 384 proteins identified in exosomes from irradiated cells, including 148 "common" proteins, 236 proteins detected specifically after irradiation and 69 proteins not detected after irradiation. Among proteins specifically overrepresented in exosomes from irradiated cells were those involved in transcription, translation, protein turnover, cell division and cell signaling. This indicated that exosomal cargo reflected radiation-induced changes in cellular processes like transient suppression of transcription and translation or stress-induced signaling.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.