Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 5

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  electronic properties
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
The structural and electronic properties of boron and nitrogen atom substitutional doping in (8,0)@(13,0) (semiconductor@semiconductor) and (6,0)@(13,0) (metallic@semiconductor) double walled carbon nanotubes, were obtained by using the first-principle calculations based on the density functional theory. In this framework, the electronic density plays a central role and it was obtained from a self-consistent field form. When boron or nitrogen substitutes a carbon atom the structure remains practically the same with negligible deformation observed around defects in all configurations considered. The electronic band structure results indicate that the boron doped systems behave as a p-type impurity, however, the nitrogen doped systems behave as an n-type impurity. In all the systems investigated here, we found that, in the cases of semiconductor@semiconductor tubes, they were the easiest to incorporate a B atom in the outer-wall and an N atom in the inner-wall of the nanotube.
Open Physics
|
2010
|
vol. 8
|
issue 4
628-633
EN
The structural, electronic and elastic properties of the cubic boron nitride (BN) compound are investigated by a first-principle pseudopotential method. The calculations show that the structural phase transition from the zinc-blende(ZB) structure to the rocksalt (RS) structure occurs at a transition pressure of 1088 GPa and with a volume reduction of 3.1%. Both the ZB and RS structures of BN have indirect gaps, with energy gaps of 4.80 eV and 2.11 eV, respectively. The positive pressure derivative of the indirect band gap (Γ-X) energy for the the ZB phase and the predicted ultrahigh metallization pressure are attributed to the absence of d occupations in the valence bands. The increase of the shear modulus with increasing pressure implies that the lattice stability becomes higher when BN is compressed.
Open Physics
|
2009
|
vol. 7
|
issue 4
753-761
EN
Using First-principle calculations, we have studied the structural, electronic and elastic properties of M2TlC, with M = Ti, Zr and Hf. Geometrical optimization of the unit cell is in good agreement with the available experimental data. The effect of high pressures, up to 20 GPa, on the lattice constants shows that the contractions are higher along the c-axis than along the a axis. We have observed a quadratic dependence of the lattice parameters versus the applied pressure. The band structures show that all three materials are electrical conductors. The analysis of the site and momentum projected densities shows that bonding is due to M d-C p and M d-Tl p hybridizations. The M d-C p bonds are lower in energy and stiffer than M d-Tl p bonds. The elastic constants are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young’s modulus and Poisson’s ratio for ideal polycrystalline M2TlC aggregates. We estimated the Debye temperature of M2TlC from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of Ti2TlC, Zr2TlC, and Hf2TlC compounds that requires experimental confirmation.
EN
First-principles calculations have been used to study the structural, electronic, magnetic, and thermal properties of the Cr doped Ge₆Mn₂Te₈ and Ge₆Fe₂Te₈ systems. The calculations were performed using the full-potential linearized augmented plane wave plus local orbitals (FP-LAPW + LO) method based on the spin-polarized density functional theory. Additionally, the electronic exchange-correlation potential is approximated using the spin generalized gradient approximation. The structural properties of the Ge₅Mn₂CrTe₈ and Ge₅Fe₂CrTe₈ alloys are indicated by their corresponding lattice constants, values of the bulk moduli and their pressure derivatives. An analysis of the band structures and the densities of states indicate that for both alloys, they present nearly half-metallic ferromagnetism character. The band structure calculations are used to estimate the spin-polarized splitting energies, Δp_{x}(d) and Δp_{x}(pd) produced by the 3d Mn, 3d Fe and 3d Cr doped states as well as the s(p)-d exchange constants, N₀α (conduction band) and N₀β (valence band). It is observed that the p-d hybridization reduces the magnetic moment of the Mn and Fe atoms from their atomic charge values and create small local magnetic moments on the nonmagnetic Ge and Te sites. Furthermore, the calculations of the charge density indicate that both compounds have ionic bonding character. Through the quasi-harmonic Debye model, the effects of pressure P and temperature T on the bulk modulus B, the primitive cell volume V/V₀, the Debye temperature θ_{D}, the Grüneisen parameter γ, the heat capacity C_{V}, the entropy S, as well as the thermal expansion coefficient, α of the Ge₆Mn₂Te₈, Ge₅Mn₂CrTe₈, Ge₆Fe₂Te₈ and Ge₅Fe₂CrTe₈ alloys are predicted.
EN
In this study, we have investigated the structural, electronic, and elastic properties of the M₂CdC (M = Ta, Zr, and Hf) MAX phases, using the first-principle methods based on the density functional theory. The calculated formation energies revealed that these compounds are thermodynamically stable in the hexagonal MAX phase. The stability is confirmed by the elastic constants and the conditions of mechanical stability criterion. Also, we have determined the bulk and shear modules of the Young modulus and the Poisson coefficient. The band structures indicate that the three materials are electrically conductive. The chemical bond in M₂CdC is covalent-ionic in nature with the presence of metallic character. For the density of states the hybridization peak between M d and C p occurs in the lower energy range. We have found that there is no gap for these materials due to the existence of a maximum peak of DOS around Fermi level.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.